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Consultingwerk Ltd.

 Independent IT consulting organization
 Focusing on OpenEdge and .NET
 Located in Cologne, Germany
 Customers in Europe, North America, Australia 

and South Africa
 Vendor of tools and consulting programs
 25 years of Progress experience (V5 … OE11)
 Specialized in GUI for .NET, OO, Software 

Architecture, Application Integration
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Agenda

 Traditional/Classic Error Handling recap
 Structured Error Handling
 Combining Structured and Classic Err. Handling
 STOP Conditions
 Error Handling best practices
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Runtime „conditions“

 (Runtime) Error

 Application Error

 Stop Conditions

 Quit Conditions 
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Classic Error Handling

 Block oriented error handling
 Error handling directives (ON ERROR …)
 Intuitively used by experienced ABL developers
 Made more sense in TTY data entry

 NO-ERROR option on a number of statement
 ERROR-STATUS System Handle
 RETURN ERROR <return value>
 NO-UNDO for variables and temp-tables
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Error handling sequence in a block



 Stops execution of current block

 Display error message

 Undo transaction or sub-transaction (if present)

 Branch action (RETRY, LEAVE, NEXT) 
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Default branching options per block type
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Routine-level blocks

 .p file, .w file
 Internal procedure
 User-defined function
 Database trigger
 User-interface trigger
 Class method, including

– Constructor
– GET/SET
– Destructor
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Classic Error Handling Issues

 Default Branching not always optimal for non 
TTY UI processing 
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Classic Error Handling Issues

 Calling statements with NO-ERROR leaves 
ERROR-STATUS behind

 ERROR-STATUS:ERROR and RETURN-
VALUE need to be reset by 
– ERROR-STATUS:ERROR = FALSE NO-

ERROR
– RETURN "" . 

 Otherwise confusing if (pending) error was 
already handled or not 
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Agenda

 Traditional/Classic Error Handling recap
 Structured Error Handling
 Combining Structured and Classic Err. Handling
 STOP Conditions
 Error Handling best practices
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Structured Error Handling

 Alternative way of handling errors in the ABL
 Adds error handling constructs known form OO 

languages such as C# and Java to the ABL
 Based on OO-ABL elements
 Usable and useful with procedural code without 

exception (such as classic error handling can be 
used in OO)

 Available since 10.1C, enhanced in 10.2A 
(garbage collection), 11.3 (block-level default), 
11.4 (serializable error classes)
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FINALLY

 Clean up code block, can be attached to the end 
of every undoable block

 Executed when block succeeds, errors, 
executed per iteration of block (loops)

 Can be nested
 Available since 10.1C

 Must use! For everyone using dynamic queries 
etc… every code that requires clean up at 
runtime
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It should become your routine 
to add FINALLY Block close 
enough to CREATE object 

statement



CATCH

 Block to handle runtime errors in the 
surrounding block

 When error occurs:
– Block execution (iteration) stops
– Transaction or sub-transaction undone
– CATCH block execution

 CATCH Block allows to inspect the error 
 Any undoable block is a TRY block (no explicit 

TRY block needed in the ABL)
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CATCH

 CATCH block filters errors by type
 Multiple CATCH blocks can handle specific 

errors
 Should order CATCH blocks by specific to 

generic types
 First CATCH block matching the error that 

occurs handles it, following CATCH blocks will 
not handle the error
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Error classes
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 class Progress.Lang

«interface»
Error ProError

SysError AppError SoapFaultError

Object

«.NET»
System.Exception

inheritsinherits inherits

implements

inherits

implements
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Custom Error Class
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CATCH Custom Error
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Demo

 Locate Consultingwerk.Exceptions.Exception in 
http://help.consultingwerkcloud.com/smartcompo
nent_library/release/
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Raising errors … THROW

 DEFINE VARIABLE err AS <myerror> .
err = NEW <myerror> (parameter) .
err:CustomProperty = 42 . 
UNDO, THROW err . 

 UNDO, THROW NEW <myerror> (parameter)  .

 RETURN ERROR NEW <myerror> (parameter) .
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AppError constructors

 NEW AppError ()
 NEW AppError (CHARACTER)
 NEW AppError (CHARACTER, INTEGER)

 Attention: AppError (CHARACTER) and 
AppError (CHARACTER, INTEGER) 
behave differently

 Signature suggest the INTEGER 
is for an optional parameter
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AppError constructors

 UNDO, THROW NEW AppError
(„this text is NOT shown“) .

 UNDO, THROW NEW AppError
(„this text is shown to the user“, 42) .

 First statement initializes an AppError with a 
ReturnValue assigned (RETURN ERROR)

 Second statement initializes an AppError with a 
message and severity/number assigned!

 AVM only displays errors with message
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THROW Branch option on blocks …

 <block statement> ON ERROR UNDO, THROW:
 FOR EACH Customer ON ERROR UNDO, 

THROW

 When errors occur in the block, pass error for 
handling to next outer block
– Next outer block may also throw

 Iterating block will NOT iterate any further
 First error terminates everything
 No more infinitive loops caused by errors!
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Problem: UNDO, THROW from routine
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Problem: UNDO, THROW from routine
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ROUTINE-LEVEL ON ERROR UNDO, THROW

 Declarative statement, available since 10.1C
 Must be placed before any executable 

statements, including DEFINE‘s
 May be after USING

 Changes ERROR Branching option for ALL 
routine blocks in compile unit to ON ERROR 
UNDO, THROW

 No effect on loops, DO TRANSACTION, DO ON 
ERROR 
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BLOCK-LEVEL ON ERROR UNDO, THROW

 Declarative statement, available since 11.3
 Must be placed before any executable 

statements, including DEFINE‘s
 May be after USING

 Changes default ERROR Branching option for 
ALL blocks in compile unit to ON ERROR 
UNDO, THROW

 May be redefined on loops, DO TRANSACTION, 
DO ON ERROR
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BLOCK-LEVEL ON ERROR UNDO, THROW

 Don’t get used to BLOCK-LEVEL ON ERROR 
when still deploying to 10.1C – 11.2

 Don’t switch between ROUTINE-LEVEL and 
BLOCK-LEVEL using PROVERSION 
preprocessor

 Error handling should be tested during 
development

 And behave 100% the same way at runtime
 Surprises in error handling are expensive …
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Re-THROW 
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Re-THROW of Progress.Lang.SysError

 Runtime error often the root cause for 
application raised error

 Application raised error may be adding context

 Unexpected SysError should be re-thrown

 May require to “track” possible runtime error 
numbers – no (complete) list of errors expected 
per ABL statement or Widget method availalbe
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Agenda

 Traditional/Classic Error Handling recap
 Structured Error Handling
 Combining Structured and Classic Err. Handling
 STOP Conditions
 Error Handling best practices
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Combining Structured and Classic Err. Hndl

 THROW and classic error handling fully 
compatible

 AppError or any of the runtime error handled 
based on branch action of receiving block: 
– RETRY
– NEXT 
– LEAVE
– RETURN 
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ON ERROR UNDO, RETRY
Because of FRAME based UI
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Combining Structured and Classic Err. Hndl

 All errors available through ERROR-STATUS 
system handle

 AppError with ReturnValue same impact as 
RETURN ERROR <return-value>
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Recommendation

 Do not add ROUTINE-LEVEL or BLOCK-LEVEL 
Error Handling to existing code without testing!

 Users may be used to executing reports with a 
few „Item record not on file“ messages

 Adding ROUTINE-LEVEL or BLOCK-LEVEL 
error handling will severely impact the program 
flow. 

 Users may not be able to receive the report they 
need to get their job done
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Agenda

 Traditional/Classic Error Handling recap
 Structured Error Handling
 Combining Structured and Classic Err. Handling
 STOP Conditions
 Error Handling best practices
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STOP Conditions

 Critical system error
 RUN non-existing .p file
 .r code CRC does not match schema
 trigger r. code not matching the CRC stored in 

DB schema
 DB connection missing/lost
 …
 STOP-AFTER (unfortunately)
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STOP Condition handling

 UNDO blocks until it reaches an ON STOP 
Block

 AVM may decide to skip ON STOP and proceed 
with reverting …

 Eventually may restart client startup procedure

 FINALLY Blocks are NOT executed!
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Convert STOP into AppError

 STOP can be handled by RETURN ERROR
 FINALLY will be executed
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Agenda

 Traditional/Classic Error Handling recap
 Structured Error Handling
 Combining Structured and Classic Err. Handling
 STOP Conditions
 Error Handling best practices
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Errors should be exceptional

 Errors are called “Exception” in .NET and Java

 Don‘t use errors as alternative RETURN-VALUE
 Errors should not happen
 Error handling is an expensive operation
 Transaction will be undone
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CATCH in every Event handlers

 When using structured error handling, every UI 
event handler should have a CATCH
– Classic ABL GUI
– TTY
– GUI for .NET

 If you don’t show messages by then the AVM 
will do

 Only way to create nice and feature-rich error 
dialog
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CATCH in worker methods

 Non UI code, batch routines, code that is 
calculating values etc.

 Worker methods on the other end, should not 
show error messages, all errors should be 
thrown

 Worker methods should only CATCH to handle 
automatically
– open query if not open, then re-run
– delete dynamic query widget, when QUERY-

PREPARE-FAILED
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Avoid NO-ERROR

 This cannot be handled with a CATCH block

 hQuery:QUERY-PREPARE (“…”) NO-ERROR 

 Only way to handle this is ERROR-
STATUS:ERROR or explicit checks 
– IF AVAILABLE Customer

 ERROR-STATUS:ERROR valid until next 
statement is executed with NO-ERROR
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InnerException Pattern

 Known from .NET
 Useful to „upgrade“ certain runtime errors to 

application errors (similar to RE-THROW)
 Keep original error information, such as Stack-

Trace, ReturnValue, error messages, custom 
properties

 When error happens, it happens, … all I can do 
in some locations is to add context data, to 
simplify debugging

 See Consultingwerk.Exceptions.Exception and 
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Code Review

 Consultingwerk.Exceptions.Exception
– InnerException Implementation
– SessionInfo from AppServer to Client
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Assertions

 Concept for validating method parameters
 Verify a value
 Throw an error when expected condition is not 

met
 Static methods
 Simple way to provide consistent errors for 

common issues
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Example from BufferAssert

 Consultingwerk.Assertion.BufferAssert:HasField
(hBuffer, “CustNum”) . 
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Questions?
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Don‘t miss my other presentations

 Monday 11.00: Telerik .NET for Infragistics 
Users

 Monday 16.45: DIY: Lists, Enumerators, 
Enumerations, Serialization

 Tuesday 11.00: Modernization – the
SmartComponent Library

 Tuesday 14.15: Structured Error Handling 
 Wednesday 11.00: Telerik Kendo UI with

WebSpeed
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