
Mike Fechner, Director, Consultingwerk Ltd.
mike.fechner@consultingwerk.de

ABL Structured Error Handling

ABL Structured Error Handling 2

Consultingwerk Ltd.

 Independent IT consulting organization
 Focusing on OpenEdge and .NET
 Located in Cologne, Germany
 Customers in Europe, North America, Australia

and South Africa
 Vendor of tools and consulting programs
 25 years of Progress experience (V5 … OE11)
 Specialized in GUI for .NET, OO, Software

Architecture, Application Integration
http://www.consultingwerk.de/ 3

Agenda

 Traditional/Classic Error Handling recap
 Structured Error Handling
 Combining Structured and Classic Err. Handling
 STOP Conditions
 Error Handling best practices

ABL Structured Error Handling 4

Runtime „conditions“

 (Runtime) Error

 Application Error

 Stop Conditions

 Quit Conditions

ABL Structured Error Handling 5

Classic Error Handling

 Block oriented error handling
 Error handling directives (ON ERROR …)
 Intuitively used by experienced ABL developers
 Made more sense in TTY data entry

 NO-ERROR option on a number of statement
 ERROR-STATUS System Handle
 RETURN ERROR <return value>
 NO-UNDO for variables and temp-tables
ABL Structured Error Handling 6

Error handling sequence in a block



 Stops execution of current block

 Display error message

 Undo transaction or sub-transaction (if present)

 Branch action (RETRY, LEAVE, NEXT)
ABL Structured Error Handling 7

Default branching options per block type

ABL Structured Error Handling 8

(CATCH/
FINALLY)

Routine-level blocks

 .p file, .w file
 Internal procedure
 User-defined function
 Database trigger
 User-interface trigger
 Class method, including

– Constructor
– GET/SET
– Destructor

ABL Structured Error Handling 9

ABL Structured Error Handling 10

ABL Structured Error Handling 11

ABL Structured Error Handling 12

ABL Structured Error Handling 13

Classic Error Handling Issues

 Default Branching not always optimal for non
TTY UI processing

ABL Structured Error Handling 14

Classic Error Handling Issues

 Calling statements with NO-ERROR leaves
ERROR-STATUS behind

 ERROR-STATUS:ERROR and RETURN-
VALUE need to be reset by
– ERROR-STATUS:ERROR = FALSE NO-

ERROR
– RETURN "" .

 Otherwise confusing if (pending) error was
already handled or not

ABL Structured Error Handling 15

Agenda

 Traditional/Classic Error Handling recap
 Structured Error Handling
 Combining Structured and Classic Err. Handling
 STOP Conditions
 Error Handling best practices

ABL Structured Error Handling 16

Structured Error Handling

 Alternative way of handling errors in the ABL
 Adds error handling constructs known form OO

languages such as C# and Java to the ABL
 Based on OO-ABL elements
 Usable and useful with procedural code without

exception (such as classic error handling can be
used in OO)

 Available since 10.1C, enhanced in 10.2A
(garbage collection), 11.3 (block-level default),
11.4 (serializable error classes)

ABL Structured Error Handling 17

FINALLY

 Clean up code block, can be attached to the end
of every undoable block

 Executed when block succeeds, errors,
executed per iteration of block (loops)

 Can be nested
 Available since 10.1C

 Must use! For everyone using dynamic queries
etc… every code that requires clean up at
runtime

ABL Structured Error Handling 18

ABL Structured Error Handling 19

It should become your routine
to add FINALLY Block close
enough to CREATE object

statement

CATCH

 Block to handle runtime errors in the
surrounding block

 When error occurs:
– Block execution (iteration) stops
– Transaction or sub-transaction undone
– CATCH block execution

 CATCH Block allows to inspect the error
 Any undoable block is a TRY block (no explicit

TRY block needed in the ABL)

ABL Structured Error Handling 20

ABL Structured Error Handling 21

CATCH

 CATCH block filters errors by type
 Multiple CATCH blocks can handle specific

errors
 Should order CATCH blocks by specific to

generic types
 First CATCH block matching the error that

occurs handles it, following CATCH blocks will
not handle the error

ABL Structured Error Handling 22

ABL Structured Error Handling 23

Error classes

ABL Structured Error Handling 24

 class Progress.Lang

«interface»
Error ProError

SysError AppError SoapFaultError

Object

«.NET»
System.Exception

inheritsinherits inherits

implements

inherits

implements

ABL Structured Error Handling 25

ABL Structured Error Handling 26

Custom Error Class

ABL Structured Error Handling 27

CATCH Custom Error

ABL Structured Error Handling 28

Demo

 Locate Consultingwerk.Exceptions.Exception in
http://help.consultingwerkcloud.com/smartcompo
nent_library/release/

ABL Structured Error Handling 29

http://help.consultingwerkcloud.com/smartcomponent_library/release/

Raising errors … THROW

 DEFINE VARIABLE err AS <myerror> .
err = NEW <myerror> (parameter) .
err:CustomProperty = 42 .
UNDO, THROW err .

 UNDO, THROW NEW <myerror> (parameter) .

 RETURN ERROR NEW <myerror> (parameter) .

ABL Structured Error Handling 30

AppError constructors

 NEW AppError ()
 NEW AppError (CHARACTER)
 NEW AppError (CHARACTER, INTEGER)

 Attention: AppError (CHARACTER) and
AppError (CHARACTER, INTEGER)
behave differently

 Signature suggest the INTEGER
is for an optional parameter

ABL Structured Error Handling 31

AppError constructors

 UNDO, THROW NEW AppError
(„this text is NOT shown“) .

 UNDO, THROW NEW AppError
(„this text is shown to the user“, 42) .

 First statement initializes an AppError with a
ReturnValue assigned (RETURN ERROR)

 Second statement initializes an AppError with a
message and severity/number assigned!

 AVM only displays errors with message

ABL Structured Error Handling 32

ABL Structured Error Handling 33

THROW Branch option on blocks …

 <block statement> ON ERROR UNDO, THROW:
 FOR EACH Customer ON ERROR UNDO,

THROW

 When errors occur in the block, pass error for
handling to next outer block
– Next outer block may also throw

 Iterating block will NOT iterate any further
 First error terminates everything
 No more infinitive loops caused by errors!
ABL Structured Error Handling 34

ABL Structured Error Handling 35

Problem: UNDO, THROW from routine

ABL Structured Error Handling 36

Problem: UNDO, THROW from routine

ABL Structured Error Handling 37

UNDO, THROW

ROUTINE-LEVEL ON ERROR UNDO, THROW

 Declarative statement, available since 10.1C
 Must be placed before any executable

statements, including DEFINE‘s
 May be after USING

 Changes ERROR Branching option for ALL
routine blocks in compile unit to ON ERROR
UNDO, THROW

 No effect on loops, DO TRANSACTION, DO ON
ERROR

ABL Structured Error Handling 38

ABL Structured Error Handling 39

BLOCK-LEVEL ON ERROR UNDO, THROW

 Declarative statement, available since 11.3
 Must be placed before any executable

statements, including DEFINE‘s
 May be after USING

 Changes default ERROR Branching option for
ALL blocks in compile unit to ON ERROR
UNDO, THROW

 May be redefined on loops, DO TRANSACTION,
DO ON ERROR

ABL Structured Error Handling 40

ABL Structured Error Handling 41

BLOCK-LEVEL ON ERROR UNDO, THROW

 Don’t get used to BLOCK-LEVEL ON ERROR
when still deploying to 10.1C – 11.2

 Don’t switch between ROUTINE-LEVEL and
BLOCK-LEVEL using PROVERSION
preprocessor

 Error handling should be tested during
development

 And behave 100% the same way at runtime
 Surprises in error handling are expensive …
ABL Structured Error Handling 42

Re-THROW

ABL Structured Error Handling 43

Re-THROW of Progress.Lang.SysError

 Runtime error often the root cause for
application raised error

 Application raised error may be adding context

 Unexpected SysError should be re-thrown

 May require to “track” possible runtime error
numbers – no (complete) list of errors expected
per ABL statement or Widget method availalbe

ABL Structured Error Handling 44

Agenda

 Traditional/Classic Error Handling recap
 Structured Error Handling
 Combining Structured and Classic Err. Handling
 STOP Conditions
 Error Handling best practices

ABL Structured Error Handling 45

Combining Structured and Classic Err. Hndl

 THROW and classic error handling fully
compatible

 AppError or any of the runtime error handled
based on branch action of receiving block:
– RETRY
– NEXT
– LEAVE
– RETURN

ABL Structured Error Handling 46

ABL Structured Error Handling 47

ON ERROR UNDO, RETRY
Because of FRAME based UI

ABL Structured Error Handling 48

ON ERROR UNDO, RETRY
Because of FRAME based UI

Combining Structured and Classic Err. Hndl

 All errors available through ERROR-STATUS
system handle

 AppError with ReturnValue same impact as
RETURN ERROR <return-value>

ABL Structured Error Handling 49

Recommendation

 Do not add ROUTINE-LEVEL or BLOCK-LEVEL
Error Handling to existing code without testing!

 Users may be used to executing reports with a
few „Item record not on file“ messages

 Adding ROUTINE-LEVEL or BLOCK-LEVEL
error handling will severely impact the program
flow.

 Users may not be able to receive the report they
need to get their job done

ABL Structured Error Handling 50

Agenda

 Traditional/Classic Error Handling recap
 Structured Error Handling
 Combining Structured and Classic Err. Handling
 STOP Conditions
 Error Handling best practices

ABL Structured Error Handling 51

STOP Conditions

 Critical system error
 RUN non-existing .p file
 .r code CRC does not match schema
 trigger r. code not matching the CRC stored in

DB schema
 DB connection missing/lost
 …
 STOP-AFTER (unfortunately)

ABL Structured Error Handling 52

STOP Condition handling

 UNDO blocks until it reaches an ON STOP
Block

 AVM may decide to skip ON STOP and proceed
with reverting …

 Eventually may restart client startup procedure

 FINALLY Blocks are NOT executed!

ABL Structured Error Handling 53

Convert STOP into AppError

 STOP can be handled by RETURN ERROR
 FINALLY will be executed

ABL Structured Error Handling 54

Agenda

 Traditional/Classic Error Handling recap
 Structured Error Handling
 Combining Structured and Classic Err. Handling
 STOP Conditions
 Error Handling best practices

ABL Structured Error Handling 55

Errors should be exceptional

 Errors are called “Exception” in .NET and Java

 Don‘t use errors as alternative RETURN-VALUE
 Errors should not happen
 Error handling is an expensive operation
 Transaction will be undone

ABL Structured Error Handling 56

CATCH in every Event handlers

 When using structured error handling, every UI
event handler should have a CATCH
– Classic ABL GUI
– TTY
– GUI for .NET

 If you don’t show messages by then the AVM
will do

 Only way to create nice and feature-rich error
dialog

ABL Structured Error Handling 57

ABL Structured Error Handling 58

CATCH in worker methods

 Non UI code, batch routines, code that is
calculating values etc.

 Worker methods on the other end, should not
show error messages, all errors should be
thrown

 Worker methods should only CATCH to handle
automatically
– open query if not open, then re-run
– delete dynamic query widget, when QUERY-

PREPARE-FAILED
ABL Structured Error Handling 59

Avoid NO-ERROR

 This cannot be handled with a CATCH block

 hQuery:QUERY-PREPARE (“…”) NO-ERROR

 Only way to handle this is ERROR-
STATUS:ERROR or explicit checks
– IF AVAILABLE Customer

 ERROR-STATUS:ERROR valid until next
statement is executed with NO-ERROR

ABL Structured Error Handling 60

InnerException Pattern

 Known from .NET
 Useful to „upgrade“ certain runtime errors to

application errors (similar to RE-THROW)
 Keep original error information, such as Stack-

Trace, ReturnValue, error messages, custom
properties

 When error happens, it happens, … all I can do
in some locations is to add context data, to
simplify debugging

 See Consultingwerk.Exceptions.Exception and
DataAccess classABL Structured Error Handling 61

ABL Structured Error Handling 62

Code Review

 Consultingwerk.Exceptions.Exception
– InnerException Implementation
– SessionInfo from AppServer to Client

ABL Structured Error Handling 63

Assertions

 Concept for validating method parameters
 Verify a value
 Throw an error when expected condition is not

met
 Static methods
 Simple way to provide consistent errors for

common issues

ABL Structured Error Handling 64

Example from BufferAssert

 Consultingwerk.Assertion.BufferAssert:HasField
(hBuffer, “CustNum”) .

ABL Structured Error Handling 65

Questions?

66http://www.consultingwerk.de/

Don‘t miss my other presentations

 Monday 11.00: Telerik .NET for Infragistics
Users

 Monday 16.45: DIY: Lists, Enumerators,
Enumerations, Serialization

 Tuesday 11.00: Modernization – the
SmartComponent Library

 Tuesday 14.15: Structured Error Handling
 Wednesday 11.00: Telerik Kendo UI with

WebSpeed

ABL Structured Error Handling 67

Telerik .NET Controls for Infragistics Users 68

	Foliennummer 1
	Foliennummer 2
	Consultingwerk Ltd.
	Agenda
	Runtime „conditions“
	Classic Error Handling
	Error handling sequence in a block
	Default branching options per block type
	Routine-level blocks
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Classic Error Handling Issues
	Classic Error Handling Issues
	Agenda
	Structured Error Handling
	FINALLY
	Foliennummer 19
	CATCH
	Foliennummer 21
	CATCH
	Foliennummer 23
	Error classes
	Foliennummer 25
	Foliennummer 26
	Custom Error Class
	CATCH Custom Error
	Demo
	Raising errors … THROW
	AppError constructors
	AppError constructors
	Foliennummer 33
	THROW Branch option on blocks …
	Foliennummer 35
	Problem: UNDO, THROW from routine
	Problem: UNDO, THROW from routine
	ROUTINE-LEVEL ON ERROR UNDO, THROW
	Foliennummer 39
	BLOCK-LEVEL ON ERROR UNDO, THROW
	Foliennummer 41
	BLOCK-LEVEL ON ERROR UNDO, THROW
	Re-THROW
	Re-THROW of Progress.Lang.SysError
	Agenda
	Combining Structured and Classic Err. Hndl
	Foliennummer 47
	Foliennummer 48
	Combining Structured and Classic Err. Hndl
	Recommendation
	Agenda
	STOP Conditions
	STOP Condition handling
	Convert STOP into AppError
	Agenda
	Errors should be exceptional
	CATCH in every Event handlers
	Foliennummer 58
	CATCH in worker methods
	Avoid NO-ERROR
	InnerException Pattern
	Foliennummer 62
	Code Review
	Assertions
	Example from BufferAssert
	Questions?
	Don‘t miss my other presentations
	Foliennummer 68

