Consultingwerk

software architecture and development

Lists, Generics, Enumerators,
Enumerations, Serialization

EHIG\LLENGE Mike Fechner, Director, Consultingwerk Ltd.

EXCHANGE mike.fechner@consultingwerk.de
AMERICAS

Consultingwerk

software architecture and development

http://www.consultingwerk.de/ 2

Consultingwerk

software architecture and development

Consultingwerk Ltd.

ndependent IT consulting organization
~ocusing on OpenEdge and related technology

_ocated in Cologhe, Germany

Customers in Europe, North America, Australia
and South Africa

Vendor of tools and consulting programs
25 years of Progress experience (V5 ... OE11)

Specialized in GUI for .NET, OO, Software
Architecture, Application Integration

http://www.consultingwerk.de/

Consultingwerk

software architecture and development

Warning!

= |f you believe include files /3
should not be used with class
files at all, you are probably in |
the wrong presentation /

= You will see how include files /
can be used to enhance /
OO ABL usabillity and help K
focus on the real problem

Lists, Enumerations, Serialization 4

&)
Consultingwerk
software architecture and development

Agenda

- Introduction — OO ABL

= OO ABL’s missing features
= Lists of Objects

= Generic Lists of Objects

= List Enumerators

= Enumerations

= Object Serialization

Lists, Enumerations, Serialization

Consultingwerk

software architecture and development

Introduction - OO ABL

= OOABL Is not a separate language, it's a feature
of the ABL (aka 4GL available since 1982)

= OO ABL and procedural cooperate

= Procedures can
— create Object instances
— Invoke methods of Objects
— Get/Set properties
— Subscribe to events from classes/events

= Procedures can use classes as parameters

DEFINE INPUT PARAMETEE poParameter AS SampleOl.CustomerReportParameter NO-UNDO .

Lists, Enumerations, Serialization

6

Consultingwerk

software architecture and development

OO ABL Timeline

= 10.1A first implementation, classes, objects, methods
= 10.1B Interfaces, USING statement, properties

= 10.1C Static members, structured error-handling,
properties in Interfaces, DYNAMIC-NEW

= 10.2A GUI for .NET, garbage collection for objects
(anything reference by a WIDGET-HANDLE or COM-
HANDLE is not an object)

= 10.2B Abstract classes, abstract members, .NET
generic type definition, strong typed events, reflection
part |

Lists, Enumerations, Serialization 7

Consultingwerk

software architecture and development

OO ABL Timeline

= 11.0 DYNAMIC-PROPERTY
= 11.0 JSON Object Model as classes

= 11.2 REST Adapter can call into class directly, singleton-
run

= 11.4 Serialization between ABL Client and AppServer
= 11.4 Ability to THROW errors from AppServer to client

= 11.6, expected later in 2015
https://community.progress.com/community groups/ope
nedge qgeneral/m/documents/1823.aspx

= Generally new language features are more often added
as objects and not as new statements

Lists, Enumerations, Serialization 8

https://community.progress.com/community_groups/openedge_general/m/documents/1823.aspx

Consultingwerk

software architecture and development

OO ABL and AppServer

= The AppServer protocol only speaks procedural

= Every client needs to call into procedures
(except the REST Adapter)

= Activate, Deactivate, Connect, Disconnect
procedures

= AppServer may use objects from there on

= Can only pass an object as a parameter
between AppServer and ABL Client from 11.4 on

Lists, Enumerations, Serialization 9

Consultingwerk

software architecture and development

OO ABL and AppServer

= Can‘t remotely call into an object like we can into
a remote persistent procedure (not
recommended anyway, but possible,
unfortunately used a lot)

= OO ABL and AppServer limitation typically
solved by OERA patterns:

— Service Adapter on the client
— Service Interface on the AppServer

Lists, Enumerations, Serialization 10

&)
Consultingwerk
software architecture and development

Agenda

= |Introduction — OO ABL

= 00 ABL’s missing features
= Lists of Objects

= Generic Lists of Objects

= List Enumerators

= Enumerations

= Object Serialization

Lists, Enumerations, Serialization

Consultingwerk

software architecture and development

OO ABL's missing features

= Lists, Dictionaries

= Generic Lists and Dictionaries
= LINQ

= Enums

= Reflection: Abllity to query methods and
properties of an object or a class

= Ablility to query a classes, properties, methods
annotations at runtime

= Serialization for non ABL clients
= Ability to store objects (structures) in DB

Lists, Enumerations, Serialization 12

Consultingwerk

software architecture and development

Risk with OO ABL'‘s missing features

= Poor OO code ..., too many workarounds

= ABL may be seen as a legacy code only
language

= Difficulty adopting patterns or sample code form
other OO languages to ABL

= Acceptance problems of OO ABL at young
developers

= Modernization decisions may be based on
missing OO features, ignoring the strength of the
ABL in so many other aspects

Lists, Enumerations, Serialization 13

Consultingwerk

software architecture and development

Agenda

= Introduction — OO ABL

= OO ABL’s missing features
= Lists of Objects

= Generic Lists of Objects

= List Enumerators

= Enumerations

= Object Serialization

Lists, Enumerations, Serialization

Consultingwerk

software architecture and development

Lists of Objects

= ABL variable may reference a single object
Instance at a time

= ABL property may reference a single object at a
time

j* EEIEERRREERRERRREERRRRRREES Definitions

Fhkkkkdkkkbkkkkkkkkkkkkkdkddkkk &

DEFINE VARIABLE oCustomer AS Samples.Customer.Customer NO-UNDO .

= EEEXEEEEEEEEEXEEEEEEREEEXEEXEEEXEE KKK XK A 3
S/ Main Block

FIND FIRST Customer . USING Progress.Lang.* FROM PROPATH .
. USING Samples.Customer.® FROM PROPATH .
oCustomer = NEW Samples.Customer.Customer (BUFFER Customer:iHANDLE) . USING Consultingwerk.Assertion.*® FROM PROPATH.

e |
CLASS Samples.Customer.Customer:

Purpose: References the address of the customer
Motes:

DEFINE PUBLIC PROPERTY Address AS Address NO-UNDO
GET.
SET.

Lists, Enumerations, Serialization 15

Consultingwerk

software architecture and development

List of Objects

= What if we are successful and win a second
customer? Or a third? Or more?

= What if a customer may have multiple addresses?

= We can use arrays (EXTENT’s) of Objects

Lists, Enumerations, Serialization 16

Consultingwerk

software architecture and development

Referencing objects in an Array

f* e L R L DEfiﬂitiDﬂE EE R R R R R L R L L *f

USING Samples.Customer.* FROM PROPATH.

DEFINE VARIABLE oCustomers AS Samples.Customer.Customer NO-UNDO EXTENT .
DEFINE VARIAELE 1 AS INTEGER NO-UNDOD .

DEFINE QUERY qCustomer FOR Customer .

f* FEFEFFEFEFIFFEFEE IR R R R R R R Haiﬂ ElDCk FEFEFEFFFEEEFEFF R R R R R R R *f

OPEN QUERY qCustomer
PRESELECT EACH Customer WHERE Cust
EXTENT (oCustomers) = QUERY gqCustomer:NUM-RESULTS .

DO WHILE QUERY qCustomer:GET-NEXT ():
i=1+1.

oCustomers[i] = NEW Customer (BUFFER Customer:Handle) .

END .

L

17

Consultingwerk

software architecture and development

Demo

= Populating Array of Customers

Lists, Enumerations, Serialization 18

Consultingwerk

software architecture and development

Array drawbacks

= Arrays are fixed in extent size once they contain
data

= To re-size an Array (add another item or remove
an item) you have to re-initialize the array
causing the Array to loose all data

= An Array Is considered a single variable — so all
object references (pointers) are required to be
within 32k

— A rather theoretical limitation, | believe

Lists, Enumerations, Serialization

19

&)
Consultingwerk
software architecture and development

Alternative variable length Lists

= Linked lists

= Temp-Table with Progress.Lang.Object field

Lists, Enumerations, Serialization 20

Consultingwerk

software architecture and development

Linked Lists

Customer 1 A Customer 2 A Customer 3 A Customer 4 E./ 7

= Customer object needs additional property to
reference next item in the list

= Disadvantage: Customer Object needs to
manage list as well, no separation of concern

Lists, Enumerations, Serialization 21

Consultingwerk

software architecture and development

Linked lists

Customer 1 Customer 2 Customer 3 Customer 4

1 1 1 1

—> Listltem 2 B Listlitem3 E_ A Listltem4 Mot 7

= Customer object kept as it

= Specialized “List Item” object instances that
reference “their” customer instance and the next
liIst Item

Lists, Enumerations, Serialization 22

Consultingwerk

software architecture and development

Linked Lists

= Allows all kind of List manipulations
= Add instance (at the end)

= |nsert instance (anywhere in the list)
= Delete reference

= Requires additional object for list item
= Relatively complex implementation

— not very ABL’ish — we don’t use ABL because
we are keen to manipulate pointer values

Lists, Enumerations, Serialization 23

Consultingwerk

software architecture and development

List based on Temp-Table

= Temp-Tables may contain fields of type
,Progress.Lang.Object" to reference objects

= Temp-Tables may contain any number of
records (0 .. n)

= Temp-Tables provide the “ABL"-ishst way of
managing variable a set of object references

DEFINE PRIVATE TEMP-TABLE ttList NO-UNDO
FIELD ListItem AS Progress.Lang.0bject
INDEX ListItem ListItem

Lists, Enumerations, Serialization

24

Consultingwerk

software architecture and development

Typical List class methods

= Add (Progress.Lang.Obiject)

= Add (Progress.Lang.Object][])

= Clear ()

= LOGICAL Contains (Progress.Lang.Object)
= Progress.Lang.Object Getltem (INTEGER)
= Remove (Progress.Lang.Object)

= RemoveAt (INTEGER)

= Object[] ToArray ()

= PROPERTY: Count (INTEGER)

Lists, Enumerations, Serialization 25

Consultingwerk

software architecture and development

Reducing Temp-Table overhead

= OO may need lots of lists ...

= Temp-Tables with small amount of records
disproportionate overhead (dbi file growth)

= |ssue relaxed for empty temp-tables in OE11

= Solution: break encapsulation — use shared
temp-table

DEFINE PRIVATE STATIC TEMP-TABLE ttList NO-UNDO
FIELD RecordOwner AS CHARACTER
FIELD ListItem AS Progress.lLang.0Object
INDEX RecordOwner RecordOwner ListItem

Lists, Enumerations, Serialization 26

Consultingwerk

software architecture and development

Reducing Temp-Table overhead

= OO may need lots of lists ...
= Temp-Tables with small amount of records

Purpose: Adds an Item to the List

Motes:
iparam poltem The Item to add to Tthe List
return The item that was added €o the List

METHOD PUBLIC Progress.Lang.Object Add (poltem AS Progress.lLang.0Object):
DEFINE BUFFER ttList FOR ttList .
CREATE ttList.

ASSIGN ttlist.RecordOwner
ttlList.ListItem

cInternalld
poltem .

THIS-OBJECT:OnListChanged (NEW ListChangedEventArgs (ListChangedTypeEnum:ListItemAdded)) .

RETURN poltem .

END METHOD.

Lists, Enumerations, Serialization 27

Consulting

software architecture and development

Adding Customers to List class

USING Consultingwerk.Framework.Base.® FROM PROPATH .
USING Samples.CustomerWithList.® FROM PROPATH.

DEFINE VARIAELE oCustomers AS List MO-UNDO .
DEFINE QUERY qCustomer FOR Customer .
lI,-'=|-= EE R R R e e e e e e Il_'lain ElDCk. EE e =|-=II,-'
oCustomers = NEW List () .
OPEN QUERY qCustomer

PRESELECT EACH Customer WHERE Customer.Custium < 1o68

AND Customer.SalesRep = "HXM" .

D0 WHILE QUERY gqCustomer:GET-NEXT ():

oCustomers:Add (NEW Customer (BUFFER Customer:Handle)) .

END.

MESSAGE "Count"™ oCustomers:Count
VIEW-AS ALERT-BOX.

Lists, Enumerations, Serialization

28

Consultingwerk

software architecture and development

Customer class with List of Addresses

CONSTRUCTOR PUBLIC Customer (phBuffer AS HANDLE):
DEFINE VARIABLE oAddress AS Address NO-UNDO .

SUPER ().
BufferfAssert:IsAvailable (phBuffer) .

ASSIGN THIS-OBJECT:Addresses = NEW List () .

END CONSTRUCTOR.

ASS5IGN THIS-COBIECT :CustNum = phBuffer::Custhum
THIS-OBIECT :Name = phBuffer::Name
THIS-OBJECT:Contact = phBuffer::Contact
THIS-OBJECT:Phone = phBuffer::Phone
THIS-OBJIECT:SalesRep = phBuffer::5alesRep
THIS-OBIECT:Creditlimit = phBuffer::Creditlimit
THIS-0BJIECT:Balance = phBuffer::Balance
THIS-OBIECT : Terms = phBuffer::Terms
THIS-OBJECT:Discount = phBuffer::Discount
THIS-OBJIECT:Comments = phBuffer::Comments
THIS-OBJIECT:Fax = phBuffer::Fax
THIS-0BIECT:EmailAddress = phBuffer::EmailAddress .

ofddress = NEW Address () .

THIS-OBJECT:Addresses:Add (ofAddress) .

ASSIGN cAddress:Country = phBuffer::Country
obddress:Address = phBuffer::Address
obddress:Address2 = phBuffer::Address2
obAddress:City = phBuffer::City
obAddress:State = phBuffer::5tate
obAddress:PostalCode = phBuffer::PostalCode .

29

Consultingwerk

software architecture and development

Sample

= Customer class with list of Addresses
= Loop through List of Customers
= Review List class methods

Lists, Enumerations, Serialization 30

&)
Consultingwerk
software architecture and development

Agenda

= |Introduction — OO ABL

= OO ABL’s missing features
= Lists of Objects

= Generic Lists of Objects
= List Enumerators

= Enumerations

= Object Serialization

Lists, Enumerations, Serialization

Consultingwerk

software architecture and development

Generic Lists of Objects

= Standard List (of Progress.Lang.Object) two
problems

— You can't enforce item type during Add
— You have to cast to item type after Getltem()

Lists, Enumerations, Serialization 32

Consultingwerk

software architecture and development

Standard List can‘t enforce item type

= Can add Address to oCustomers and add
Customer to Addresses

CAST (oCustomers:GetItem(l), Customer):Addresses:Add ((NEW Customer (42))) .

Lists, Enumerations, Serialization 33

Consultingwerk

software architecture and development

Standard List requires CAST on Getltem()

= Need to CAST Getltem(1) of oCustomers to
Customer

= Need to CAST Getltem(1) of
oCustomers:Addresses:Getltem(1) to Address

MESSAGE CAST (oCustomers:GetItem(l), Customer):CustNum SKIP
CAST (oCustomers:GetItem(l), Customer):Name SKIP

CAST (CAST (oCustomers:GetItem(l), Customer):Addresses:GetItem(l), Address):Country
WIEW-AS ALERT-BOX .

Message (Press HELP to view stack trace)

[

1
Lift Tours Corp GrmbH
usa

Lists, Enumerations, Serialization 34

Consultingwerk

software architecture and development

Need for ListCustomer and ListAddress

= Need specific List's for Customer and Address:

= ListCustomer
— Add (Customer)
— Customer Getltem (INTEGER)

= ListAddress
— Add (Address)
— Address Getltem (INTEGER)

Lists, Enumerations, Serialization 35

Consulting

software architecture and development

Generic Types in C#

= List<T>

public class List<T»> : IList<T», ICollection<T>,
IList, ICollection, IReadOnlylList<T>, IReadOnlyCollection<T>, IEnumerable<T:>,
IEnumerable

public woid Add(

)

T item

Parameters

iterm

Type: T
The object to be added to the end of the List=T=. The value can be null for reference types.

Lists, Enumerations, Serialization

public T this[
int index

] { get; set; }

57

Parameters

index
Type: Systemn.Int32
The zero-based index of the element to get or =&t

Property Value
Type: T
The element at the spacified index.

Consultingwerk

software architecture and development

Generic Types in C# (or GUI for .NET)

= DEFINE VARIABLE oList AS “List<Customer>" .
= On the fly defined ...

= oList:Add (Customer)

= oList[O]:Name ->no CAST required

= Add enforces list type
= Getltem does not require CAST to List Type

= ABL lacks capabilities for ABL Generic Types

Lists, Enumerations, Serialization 37

Consultingwerk

software architecture and development

Generic List In the ABL

= Generic List implementation using Include File ...

USING Consultingwerk.Framework.Base.*® FROM PROPATH .
USING Samples.Genericlists.™* FROM PROPATH .
USING Progress.Lang.® FROM PROPATH .

CLASS Samples.Genericlists.ListCustomer
INHERITS GenericlList:

{Consultingwerk/Framework/Base/Genericlist.i Customer}

END CLASS.
USING Consultingwerk.Framework.Base.® FROM PROPATH .

USING Samples.Genericlists.® FROM PROPATH .
USING Samples.Customer.® FROM PROPATH .
USING Progress.Lang.* FROM PROPATH . I

CLASS Samples.Genericlists.ListAddress
INHERITS Genericlist:

{Consultingwerk/Framework/Base/Genericlist.1 Address}

END CLASS.

Lists, Enumerations, Serialization 38

Consulting

software architecture and development

Preprocessor Listing

Purpose: Adds an item to the genmeric List
Motes:

@param poltem And item of the Lists member type
@return The new Item added to the List

METHOD PUBLIC Customer Add (poItem AS Customer):

SUPER:Internaladd (poIltem).

RETURN poItem .

Purpose: Retriewves an item from the generic List

Notes: CAST's the element from the underlying Progress.Llang.0Object based
list

ffparam piIndex The 1 based index of the item to retrieve

freturn The item of the Lists member type

METHOD PUBLIC Customer GetItem (INPUT pilndex AS INTEGER }:
RETURM CAST (SUPER:InternalGetItem (piIndex), Customer) .

END METHOD.

Lists, Enumerations, Serialization

Purpose: Adds an item to the generic List
Motes:

iparam poltem And item of the Lists member
ireturn The new Item added to the List

METHOD PUBLIC {1} Add (poItem AS {1}):
SUPER:Internaladd (poltem).
RETURN poItem .

END METHOD.
e

39

Consultingwerk

software architecture and development

Access Customer and Address

CLASS Samples.Genericlists.Customer:

Purpose: References the address of the customer
Motes:

DEFINE PUBLIC PROPERTY Addresses AS ListAddress NO-UNDO
GET.
SET.
oCustomers = NEW ListCustomer () .
OPEN QUERY qCustomer

PRESELECT EACH Customer WHERE Cust

AND Cust

D0 WHILE QUERY qCustomer:GET-NEXT ():

ofustomers:Add (MEW Customer (BUFFER Customer:Handle)) .

END.

MESSAGE oCustomers:GetItem(l):CustNum SKIP
oCustomers:GetItem(1l):Name SKIP

oCustomers:GetItem(l):Addresses:GetItem{1):Country
VIEW-AS ALERT-BOX .

40

Consultingwerk

software architecture and development

Agenda

= |Introduction — OO ABL

= OO ABL’s missing features
= Lists of Objects

= Generic Lists of Objects

= List Enumerators

= Enumerations

= Object Serialization

Lists, Enumerations, Serialization

Consultingwerk

software architecture and development

Agenda

= |Introduction — OO ABL

= OO ABL’s missing features
= Lists of Objects

= Generic Lists of Objects

= List Enumerators

= Enumerations

= Object Serialization

Lists, Enumerations, Serialization

Consultingwerk

software architecture and development

List Enumerators

= Typical requirement to process all or some
elements of the list in sequence

= One option to loop from 1 to oList:Count with a
counter

D0 1 =1 TO ofustomers:Count:

oCustomer = oCustomers:GetItem(l) .

DEFINE WARIABLE oCustomer AS Customer MO-UNDD .

DEFINE VARIABLE i AS INTEGER NO-UNDO . MESSAGE oCustomer:Custhum SKIP
oCustomer:Name

DEFINE VARIABLE oAddress A5 Address NO-UNDO . VIEW-AS ALERT-BOX .

DEFINE VARIABLE j AS INTEGER NO-UNDO .

D0 j = 1 TO cCustomer:Addresses:Count:

oAddress = oCustomer:Addresses:GetItem (j) .

MESSAGE oAddress:Address SKIP
obddress:Address2 SKIP
ofAddress:City

VIEW-A5 ALERT-BOX.

Lists, Enumerations, Serialization

Consultingwerk

software architecture and development

Enumerator in C#

= C# allows to "foreach" a list or other sets that are
IEnumerable ;

foreach (Customer oCustomer in oCustomers)

{ Conscle.Writeline (oCustomer.Custium);
foreach (Control ofControl in this.Controls) Console.Writeline(oCustomer.Name);
{ foreach (Address oAddress in oCustomer.Addresses)|
Consocle.Writeline(oControl.Name); {
Conscle.Writeline(cAddress., Address);
} Conscle.Writeline{oAddress., Address2);
Conscle.Writeline(ocAddress.City);
¥
¥

= Loops through all Controls in this.Controls (List)

» http://msdn.microsoft.com/en-
us/library/ttw7t8t6(v=vs./1).aspx

Lists, Enumerations, Serialization 44

http://msdn.microsoft.com/en-us/library/ttw7t8t6(v=vs.71).aspx

Consultingwerk

software architecture and development

NET Enumerator from ABL (GUI for .NET)

= This Is the ABL code similar to the C# foreach

DEFINE WARIABLE oControl A5 System.Windows.Forms.Control NO-UNDD .
DEFINE WARIABLE cControlEnumerator AS System.Collections.IEnumerator NO-UNDO .

ASSIGN eControlEnumerator = CAST(oFerm:Controls, System.Collections.IEnumerable):GetEnumerator() .
oControlEnumerator:Reset() .

0 WHILE oControlEnumerator:MoveNext() ON ERROR UNDO, THROW:
ASS5IGM eControl = CAST(oControlEnumerator:Current, System.Windows.Forms.Control) .

MESSAGE oControl:Name WIEW-AS ALERT-BOX .
END.

Irst, we get the ,,Enumerator” 10r the LISt

= That Iis an object, that provides a reference
(Current) to an item and iterates over the items
In the List

= Similar, to the ABL FOR EACH on a BUFFER

Lists, Enumerations, Serialization 45

Consultingwerk

software architecture and development

NET Enumerator from ABL (GUI for .NET)

= Let's write Consultingwerk/foreach.i (Include)

DEFINE VARIABLE {2} AS {1} NO-UNDO .
DEFINE WVARIABLE {2}Enumerator AS System.Collections.IEnumerator NO-UNDO .

ASS5IGN {2}Enumerator = CAST({4}, System.Collections.IEnumerable):GetEnumerator() .
12 Enumerator:Reset() .

DO WHILE {2}Enumerator:MoveNext() ON ERROR UNDO, THROMW: {3} not used, only
ASSIGN {2} = CAST({2}Enumerator:Current,|{1}) . used to fill up syntax

and match c#

1Consultingwerk/foreach.i Contral oControl in oForm:Controls}

MESSAGE oControl:Name VIEW-AS ALERT-BOX .

Code Completion on
properties of oControl works in
recent Versions of PDSOE,
Lists, Enumerations, Serialization did not work in 10.2B

Consultingwerk

software architecture and development

Enumerator implementation for ABL List

= |[Enumerable Interface with GetEnumerator()
method

= Enumerator instance needs to provide method
to

— Reset()
— MoveNext()

* Property
— Current

= As List is implemented using ABL Temp-Table,
we can create BUFFER and QUERY

Lists, Enumerations, Serialization 47

Consultingwerk

software architecture and development

Lists GetEnumerator() method

Purpose: Returns a new IEnumerator instance for this object instance
MNotes:
return The IEnumerator instance for this object

METHOD PUBLIC IEnumerator GetEnumerator ():

DEFINE VARIABLE hBuffer AS HANDLE NO-UNDO .
DEFINE VARIABLE hQuery AS HANDLE NO-UNDO .

CREATE BUFFER hBuffer FOR TABLE TEMP-TABLE ttList:HANDLE .
CREATE QUERY hQuery .

hQuery:SET-BUFFERS (hBuffer) .
hQuery :QUERY-PREPARE (SUBSTITUTE (“FOR EACH ttlList WHERE ttlList.RecordOwner = &1":U,
QUOTER (cInternalId))) .

RETURN MEW ListEnumerator (THIS-OBJECT,

hQuery,
hBuffer) .
END METHOD.

Lists, Enumerations, Serialization 48

Consulting

software architecture and development

Purpose: Resets the Enumerator (starts enumerating from the first item on)
Motes:

METHOD PUBLIC VOID Reset ():
hQuery :QUERY-0OPEN () .
THIS-OBJIECT:ListChanged = FALSE .

END METHOD.

Lists, Enumerations, Serialization 49

Consultingwerk

software architecture and development

Enumerators MoveNext() method

Purpose: Moves the enumerator to the next item
Motes:
ireturn True when the next item is available, false when not.

METHOD PUBLIC LOGICAL MoveNext ():

IF THIS-OBJECT:ListChanged THEN
UNDO, THROW NEW Consultingwerk.Framework.Exceptions.CannotMoveNextOnChangedList () .

hQuery:GET-NEXT () .

IF hQuery:QUERY-OFF-END THEN
RETURM FALSE .

ELSE
RETURM TRUE .

END METHOD. Purpose: Returns the current item in the List
MNotes:

DEFINE PUBLIC PROPERTY Current AS Progress.lang.0Object NO-UNDO
GET:

Consultingwerk.Assertion.HandleAssert:ValidHandle (hBuffer, "Enumeration™:U}) .
Object Reference Consultingwerk.Assertion.BufferAssert:IsAvailable (hBuffer) .

from List Temp- RETURN hBuffer::ListItem .
Table END GET .

50

Consultingwerk

software architecture and development

foreachABL.I

= We need a special version of foreach.i — simply
because we cannot use the same IEnumerator
Interface for pure ABL and ABL with GUI for
NET

DEFINE VARIABLE {2} AS 13 NO-UNDO .
DEFINE VARIABLE {2}Enumerator AS Cunsultingweﬁk.Framewark.Base.IEnumeratur NO-UNDO .

ASSIGN {2}Enumerator = CAST({4}, Consultingwerk.Framework.Base.IEnumerable):GetEnumerator() .

12 }Enumerator:Reset() .

DO WHILE {2}Enumerator:MoveNext() ON ERROR UNDO, THROW:
ASSIGN {2} = CAST({2}Enumerator:Current, {1}) .

= But as we mimic .NET Enumerators, the code
looks very similar

Lists, Enumerations, Serialization 51

Consultingwerk

software architecture and development

Include File in

Enumerating Customers an (i isesiddy

extention

{Cons {foreachABL Customer oCustomer in oCustomers}

MESSAGE oCustomer:CustNum SKIP
oCustomer:Name
UIEHLﬂS ALERT-BOX .

=

1 1
1 iforeachABL Address clAddress in oCustomer:Addresses} 5585)

MESSAGE oAddress:Address SKIP
oAddress:Address2 SKIP
cAddress:City

VIEW-AS ALERT-BOX.

= No need to remember that ABL starts counting
with 1 and .NET starts counting with O

Lists, Enumerations, Serialization 52

&)
Consultingwerk
software architecture and development

Querying while iterating List

ABL does not provide ability to Query objects
Progress.Lang.Object field in Temp-Table can
only be queried on object reference (same
pointer)

We could extend List implementation to include
Filter criteria

Probably would need multiple Filter criteria,
would require to sync Filter criteria in List
Implementation with referenced objects
Ultimately leads to redundancy of data in List
temp-table, questioning the Object at all

Lists, Enumerations, Serialization 53

Consultingwerk

software architecture and development

LINQ in C#

= Language INtegrated Query*

= Set of object + language (compiler features to
provide syntax)

List<Customer: ofustomers = new List<Customer> () ;

var queryLondonCustomers = from cust in oCustomers
where cust.City == "London" || cust.City == "Paris"
zelect cust;

foreach (Customer cust in querylLondonCustomers)

1

Consocle.Writeline(cust.Name);

foreach (Customer cust in (from cust in oCustomers

where cust.City == “"London™ || cust.City == "Paris”
select cust))

{
¥

Consocle.Writeline(cust.Name);

Lists, Enumerations, Seriau

Consultingwerk

software architecture and development

ABL version of LINQ?

= As a matter of fact most lists will be rather small

= All data is in memory anyway (Objects not stored
In DBI file as Temp-Tables are)

= |t won't cause significant overhead if we iterate
the List and just NEXT those records that don’t
match the selection criteria (negative filtering)

iforeachABL Customer oCustomer in oCustomers}

IF oCustomer:Discount <» 5 THEN
NEXT .

MESS5AGE oCustomer:CustHum SKIP
olCustomer:Name SKIP
oCustomer:Terms SKIP
oCustomer:Discount
VIEW-AS ALERT-BOX .
. END.
Lis 55

Consultingwerk

software architecture and development

lingABL.I

= Combines the benefits of foreachABL.i with
filtering using positive expressions

1lingABL Customer olustomer in oCustomers
where Discount = 5 or Discount = 28}

MESSAGE oCustomer:CustNum SKIP
oLustomer:MName S5KIP
oLustomer:Terms SKIP
oCustomer:Discount
VIEW-AS ALERT-BOX .

Lists, Enumerations, Serialization 56

Consultingwerk

software architecture and development

Preprocessor view

D0 WHILE oCustomerEnumerator:MoveNext() ON ERROR UNDO, THROW:
ASSIGN oCustomer = CAST(oCustomerEnumerator:Current, Customer) .

IF NOT (oCustomer:Discount = 5

or oCustomer:Discount = 28

} THEN MNEXT .

Filter criteria
added

MESSAGE oCustomer:CustNum 5KIP
oCustomer:Name SKIP
oCustomer:Terms 5KIP
oCustomer:Discount
VIEW-AS ALERT-BOX .

Lists, Enumerations, Serialization 57

Consultingwerk

software architecture and development

Agenda

= Introduction — OO ABL

= OO ABL’s missing features
= Lists of Objects

= Generic Lists of Objects

= List Enumerators

= Enumerations

= Object Serialization

Lists, Enumerations, Serialization

Consultingwerk

software architecture and development

Enumeration

= Often named ,Enum* in other languages
= Set of related values of the same type

— Weekdays

— Months

— Gender

— AddressType

= Each entry is an object instance itself, it's a
member of a set of "values"”

= Enumeration may be Enumerable ... do we start
to exaggerate?

Lists, Enumerations, Serialization 59

&)
Consultingwerk
software architecture and development

Enumeration

= Typically representing a Name (Text
representation) and a number (for ordering and
comparison)

= Enumeration itself typically set of static
references to member instances

= Much safer than Weekday based on INTEGER
or OrderStatus based on CHARACTER

= Compiler detects typos, no need to runtime test

= Represents a type of it's own: strong typing of
object properties or method parameters!

Lists, Enumerations, Serialization 60

Consultingwerk

software architecture and development

Enum in C#

= Enum represents a value type, each entry
stands for a value

enum Weekday

1 var currentDay = Weekday.Monday;
Monday = 1,
Tuesday = 2, if (currentDay == Weekday.Monday)
Wednesday = 3, I
Thersday - Conscle.Writeline("it"'s Monday!™);
Friday = 5,
Saturday = 6, ¥

Sunday = 7

= We can define variables of type Weekday
= Those can hold one of the Weekdays or null

Lists, Enumerations, Serialization 61l

Consultingwerk

software architecture and development

Enums in the ABL

= ABL currently does not have support for Emuns
= Enum can be build using single class

— Static portion representing the Enumeration

— Instance for each member

— A single instance created for each member
(singleton style) accessed via Properties of
Enum

Lists, Enumerations, Serialization 62

LASS Consultingwerk.WeekDayEnum INHERITS Enum: ‘ nsultingwerk

DEFINE PUBLIC STATIC PROPERTY Monday AS WeekDayEnum NO-UNDO

GET:

IF NOT VALID-OBIECT (WeekDayEnum:Monday) THEN
WeekDayEnum:Monday = NEW WeekDayErnum (1, "Monday™:U) .

wre architecture and development

STATIC

RETURN WeekDayEnum:Monday .
END GET .
PRIVATE SET.

DEFINE PUBLIC STATIC PROPERTY Tuesday AS WeekDayEnum NO-UNDO
GET:
IF NOT VALID-OBJECT (WeekDayEnum:Tuesday) THEN
WeekDayEnum:iTuesday = NEW WeekDayEnum (2, “Tuesday™:U)

RETURN WeekDayEnum:Tuesday .
END GET . S e
PRIVATE SET. Purpose: Constructor for the WeekDayEnum members

Notes:
e_________________________________
flparam piValue The internal (numeric) representation of the Enumeratiocn member

lparam pclabel The text label of the Enumaration member

__ *
Ir]s;téir](:ee CONSTRUCTOR PRIVATE WeekDayEnum (piValue AS INTEGER, pclabel AS CHARACTER):
members SUPER ()-
ASS5IGM THIS-OBJIECT:Value = piValue
THIS-OBJECT:Label = pclabel .
END CONSTRUCTOR.
: Returns a CHARACTER representation (human readable) of the
Enum member
Motes:
@returr{The CHARACTER representation of the enum member, identically to the Label property
__ *
METHOD OVERRIDE PUBLIC CHARACTER ToString ():
RETURN THIS-OBJECT:Label .
Lists, Enupr =10 METHOD- 63

Consulting

software architecture and development

A task for another Include file ©

CLASS Consultingwerk.WeekDayEnum INHERITS Enum:

1Consultingwerk/EnumMember.
fConsultingwerk/EnumMember.
1Consultingwerk/EnumMember.
1Consultingwerk/EnumMember.
1Consultingwerk/EnumMember.
1Consultingwerk/EnumMember.
1Consultingwerk/EnumMember.

Monday 1 WeekDayEnum}
Tuesday 2 WeekDayEnum}
Wednesday 3 WeekDayEnum}
Thursday 4 WeekDayEnum}
Friday 5 WeekDayEnum}
Saturday & WeekDayEnum}
Sunday 7 WeekDayEnum}

He = H= H- - He B

Purpose: Constructor for the WeekDayEnum members

Motes:

lparam piValue The internal (numeric) representation of the Enumeration member
iparam pclabel The text label of the Enumaration member

CONSTRUCTOR PRIVATE WeekDayEnum (piValue AS INTEGER, pclabel AS CHARACTER):
SUPER ().

ASS5TIGHN THIS-OBJIECT:Value = piValue
THIS-OBJECT:Label = pclabel .

END COMSTRUCTOR.

Lists, Enumerations, Serialization 064

Consultingwerk

software architecture and development

Demo

= Create a new Enum using Consultingwerk new
Class Template in PDSOE

= Review TermsEnum in Customer
= Filter oCustomers on TermsEnum

DEFINE PUBLIC PROPERTY Terms A5 TermsEnum NO-UNDO
GET.
SET.

Lists, Enumerations, Serialization 65

Consultingwerk

software architecture and development

PDSOE New Class Macro

B MNew ABL Class

- oEN

Create a user-defined class

Optionally specify ancther class as a super class frem which thlclass inherits

state and behavior.

\L\ Custom Class
Template triggered by

Package root: | ‘ListEnumsSerializationSamples

Package: Samples.Enums

base class name

Browse...

Browse

Class name: | MyDemoEnum

FModifiers: [|Final [|Abstract DWidgetpool [] Serializalg

Inherits: | Censultingwerk.Enum]

Implements:

Specify the code elements to be generated:
Method stubs:

[| Default constructor || Destructor [] Super

]

Lists, Enumerations, Serialization

USING ConsulE:i:ﬁigﬁéir"k. Enum.

CLASS Samples.Enums.MyDemoEnum INHERITS Enum: I

{Consultingwerk/EnumMember.i FirstValue @ MyDemcEnum}

Purpose: Constructor for the MyDemoEnum members
Notes:
{iparam piValue The internal (numeric) representation of the Enumerati
{iparam pclabel The text label of the Enumaration member

CONSTRUCTOR PRIVATE MyDemoEnum (piValue AS INTEGER, pclabel AS CHARACTER)
SUPER ().

AS5IGN THIS-OBJECT:Value
THIS-0OBJECT: Labhel

pivalue
nclLabel .,

&)
Consultingwerk
software architecture and development

Agenda

= Introduction — OO ABL

= OO ABL’s missing features
= Lists of Objects

= Generic Lists of Objects

= List Enumerators

= Enumerations

- Object Serialization

Lists, Enumerations, Serialization

&)
Consultingwerk
software architecture and development

Object Serialization

Transforming an object instance (or a set of
objects) into a form that can be persisted (disk,
database, etc.) or be send to another system
(aka marshalling)

Deserialization is the process of converting this
form back into an object — typically a new object
Instance, eventually on a different system or a
different time (aka unmarshalling)

Systems involved may be AppServer and Client

Serialization is about Data in an object, not the
Implementation

Lists, Enumerations, Serialization 68

Consultingwerk

software architecture and development

Serialization formats

= Need to be understood by sender and receiver
= Binary form
= Text based formats

— XML

— JSON (from OpenEdge 11 on)

- CSV

= Morse code

Lists, Enumerations, Serialization 69

Consultingwerk

software architecture and development

OpenEdge Serialization in 11.4

= Only supported between ABL Client and
AppServer

= Very well suited for parameter objects or
throwing errors from the AppServer to the client

= Does not support serialization of objects to other
clients types

— XML serialization for .NET
— JSON serialization for REST/Kendo Ul/etc.

= S0 we are using Progress’ serialization when it
fits and our own when it does not

Lists, Enumerations, Serialization 70

Consultingwerk

software architecture and development

Walkthrough JSON Serializable object

= OpenkEdge 11 provides JSON Object Model,
flexible way of parsing and generating JSON
Strings

= JSON is a LONGCHAR String, so it can be
stored and send to another system

Lists, Enumerations, Serialization 71

&)
Consultingwerk
software architecture and development

Walkthrough JSON Serializable object

We typically want to serialize properties of an
object and when we can send them to another
system, it’s a fair assumption that those properties
are PUBLIC — transport cannot hide privates

Serializing other members (e.g. temp-table would
be possible as well, but not required by us)

OpenEdge 11 has DYNAMIC-PROPERTY —so
we can query and assign properties dynamically

But we don’t know what properties are available
— No reflection in ABL (yet)

Lists, Enumerations, Serialization 72

Consultingwerk

software architecture and development

Serialization, again with an include file

= \WWe maintain our own property specs — in a
simple comma delimited list

= We use include file to consistently define
property and property specs

DEFINE PUBLIC PROPERTY {1} AS {2} NO-UNDO {3}
GET.

S5ET.

&IF "{&SerializableProperties}":U NE "":U &THEN

&ELSE
&GLOBAL-DEFINE SerializableProperties {1},{2}
&ENDIF

Lists, Enumerations, Serialization 73

Consulting

software architecture and development

Consultingwerk.JsonSerializable Customer

CLASS Samples.Serialization.Customer
INHERITS JsonSerializable:

1Consultingwerk/JsonSerializableProperty.i Addresses ListAddress) .
1Consultingwerk/JsonSerializableProperty.i CustNum INTEGER} .
1Consultingwerk/JsonSerializableProperty.i Name CHARACTER} .
1Consultingwerk/JsonSerializableProperty.i Contact CHARACTER} .
{Consultingwerk/JsonSerializableProperty.i Phone CHARACTER]} .
1Consultingwerk/JsonSerializableProperty.i SalesRep CHARACTER} .
1Consultingwerk/JsonSerializableProperty.i CreditLimit DECIMAL} .
1Consultingwerk/JsonSerializableProperty.i Balance DECIMAL} .
1Consultingwerk/JsonSerializableProperty.i Discount INTEGER} .
{Consultingwerk/JsonSerializableProperty.i Comments CHARACTER} .
1Consultingwerk/JsonSerializableProperty.i Fax CHARACTER} .
1Consultingwerk/JsonSerializableProperty.i EmailAddress CHARACTER} .
1Consultingwerk/JsonSerializableProperty.i Terms TermsEnum} .
JF e
Purpose: Constructor for the Customer class

Notes:

CONSTRUCTOR PUBLIC Customer ():
SUPER ().
THIS-0BJECT:AddSerializableProperties ('{&SerializableProperties}':U) .
THIS-0BJECT:Addresses = NEW ListAddress () .

END CONSTRUCTOR. 74

Consultingwerk

software architecture and development

Serializing Customer

USING Consultingwerk.Framework.Base.* FROM PROPATH .
USING Samples.Serialization.* FROM PROPATH .

DEFINE WARIABLE ofCustomer AS Customer NO-UNDOD .
DEFINE VARIABLE olInvolcelAddress AS Address NO-UNDD .

DEFINE VARIABLE lcSerialization AS LONGCHAR NO-UNDO .

.I'II* EEEE bk B b b Il_'lair-l Bll:le. FEEFEEFFFFER R R R Rk *II,I'
FIND FIRST Customer NO-LOCK .

oCustomer = NEW Customer (BUFFER Customer:HANDLE) .

/* Add ancther address to Customer */

oInvoiceAddress = NEW Address () .
oInvoiceAddress:AddressType = AddressTypeEnum:Invoice .

alnvoicelAddress:Address = "219 Littleton Road" .
oInvoiceAddress:City = "Westford" .
oInvoicefddress:State = "Ma" .

"@1836" .

oInvoiceAddress:PostalCode
oCustomer:Addresses:Add (oInvoiceAddress) .
lcSerialization = oCustomer:Serialize() .

MESSAGE STRING (lcSerialization)

WIEW-AS ALERT-BOX.

L 75

& customer.json C\Temp

{

"SerializedType
"Addresses™: [

{

"Country”:
"Address™:
"Address2™:

"State™:
"PostalCode
"AddressTyp

"Address":

"City": "ke
"State™:
"PostalCode
"AddressTyp

}

1.
"CustNum”: 1,

"Name™: "Lift T
"Phone”: "(617)

"CreditLimit":
"Balance": 983.
"Discount™: 35,
"Comments™:

"Terms"™:
Lists, Enumerations

"City": "Burl

"SerializedType™:

"Contact™: "Glori

"SalesRep”: "HxM"

"EmailAddress”: i

"SerializedType™: "Sampl

test ,
O1po]
polpol ,
T

1ingt »

_—

H »

" g —p oy B
£ 817 3€

e”: "Unknown'’

"219 Littleto

stford”,

.
H

n " o g W
: B1886°,
L 1] T . "
e : "Invoice

66700.9,
64,

it custome i
DR R
1 p11TC-T

17zation stome
] Customer”,
. 2EMr1dllZation. Address

1tingwerk

.cture and development

Consultingwerk

software architecture and development

Demo

= Code Review Consultingwerk.JsonSerializable

Lists, Enumerations, Serialization 77

Consulting

software architecture and development

Deserializing Customer

FIX-CODEPAGE (lcSerialization) = "utf-8" . I

COPY-LOB FROM FILE "Samples\Serializaticn\customer.json” TO lcSerialization .

oCustomer = CAST (Consultingwerk.Serializable:DeserializeInstance (lcSerializaticon),
Customer) .

MESSAGE "CustNum" oCustomer:CustNum SKIP
"Mame" oCustomer:Name SKIP
"Terms" oCustomer:Terms SKIP

"#Addresses" olCustomer:Addresses:Count
WIEW-AS ALERT-BOX.

MessagﬁPress HELP to view stack trace)

CustMurm 1
Mame Lift Tours Corp GrmbH
Terms Met30
#hddresses 2

Lists, Enumerations, Serialization 78

Consultingwerk

software architecture and development

Questions

http://www.consultingwerk.de/ 79

Consultingwerk

software architecture and development

Don‘t miss my other presentations

= Monday 11.00: Telerik .NET for Infragistics
Users

= Monday 16.45: DIY: Lists, Enumerators,
Enumerations, Serialization

= Tuesday 11.00: Modernization — the
SmartComponent Library

= Tuesday 14.15: Structured Error Handling

= Wednesday 11.00: Telerik Kendo Ul with
WebSpeed

Lists, Enumerations, Serialization 80

Consultingwerk

PUG
CHALLENGE

EXCHANGE

AMERICAS

Lists, Enumerations, Serialization

	Foliennummer 1
	Foliennummer 2
	Consultingwerk Ltd.
	Warning!
	Agenda
	Introduction - OO ABL
	OO ABL Timeline
	OO ABL Timeline
	OO ABL and AppServer
	OO ABL and AppServer
	Agenda
	OO ABL‘s missing features
	Risk with OO ABL‘s missing features
	Agenda
	Lists of Objects
	List of Objects
	Referencing objects in an Array
	Demo
	Array drawbacks
	Alternative variable length Lists
	Linked Lists
	Linked lists
	Linked Lists
	List based on Temp-Table
	Typical List class methods
	Reducing Temp-Table overhead
	Reducing Temp-Table overhead
	Adding Customers to List class
	Customer class with List of Addresses
	Sample
	Agenda
	Generic Lists of Objects
	Standard List can‘t enforce item type
	Standard List requires CAST on GetItem()
	Need for ListCustomer and ListAddress
	Generic Types in C#
	Generic Types in C# (or GUI for .NET)
	Generic List in the ABL
	Preprocessor Listing
	Access Customer and Address
	Agenda
	Agenda
	List Enumerators
	Enumerator in C#
	.NET Enumerator from ABL (GUI for .NET)
	.NET Enumerator from ABL (GUI for .NET)
	Enumerator implementation for ABL List
	Lists GetEnumerator() method
	Enumerators Reset() method
	Enumerators MoveNext() method
	foreachABL.i
	Enumerating Customers and Addresses
	Querying while iterating List
	LINQ in C#
	ABL version of LINQ?
	linqABL.i
	Preprocessor view
	Agenda
	Enumeration
	Enumeration
	Enum in C#
	Enums in the ABL
	Foliennummer 63
	A task for another Include file 
	Demo
	PDSOE New Class Macro
	Agenda
	Object Serialization
	Serialization formats
	OpenEdge Serialization in 11.4
	Walkthrough JSON Serializable object
	Walkthrough JSON Serializable object
	Serialization, again with an include file
	Consultingwerk.JsonSerializable Customer
	Serializing Customer
	Foliennummer 76
	Demo
	Deserializing Customer
	Questions
	Don‘t miss my other presentations
	Foliennummer 81

