
Mike Fechner, Director, Consultingwerk Ltd.
mike.fechner@consultingwerk.de

Lists, Generics, Enumerators,
Enumerations, Serialization

http://www.consultingwerk.de/ 2

Consultingwerk Ltd.

 Independent IT consulting organization
 Focusing on OpenEdge and related technology
 Located in Cologne, Germany
 Customers in Europe, North America, Australia

and South Africa
 Vendor of tools and consulting programs
 25 years of Progress experience (V5 … OE11)
 Specialized in GUI for .NET, OO, Software

Architecture, Application Integration
http://www.consultingwerk.de/ 3

Warning!

 If you believe include files
should not be used with class
files at all, you are probably in
the wrong presentation

 You will see how include files
can be used to enhance
OO ABL usability and help
focus on the real problem

Lists, Enumerations, Serialization 4

Agenda

 Introduction – OO ABL
 OO ABL’s missing features
 Lists of Objects
 Generic Lists of Objects
 List Enumerators
 Enumerations
 Object Serialization

Lists, Enumerations, Serialization 5

Introduction - OO ABL

 OOABL is not a separate language, it‘s a feature
of the ABL (aka 4GL available since 1982)

 OO ABL and procedural cooperate
 Procedures can

– create Object instances
– Invoke methods of Objects
– Get/Set properties
– Subscribe to events from classes/events

 Procedures can use classes as parameters

Lists, Enumerations, Serialization 6

OO ABL Timeline

Lists, Enumerations, Serialization 7

 10.1A first implementation, classes, objects, methods
 10.1B Interfaces, USING statement, properties
 10.1C Static members, structured error-handling,

properties in Interfaces, DYNAMIC-NEW
 10.2A GUI for .NET, garbage collection for objects

(anything reference by a WIDGET-HANDLE or COM-
HANDLE is not an object)

 10.2B Abstract classes, abstract members, .NET
generic type definition, strong typed events, reflection
part I

OO ABL Timeline

Lists, Enumerations, Serialization 8

 11.0 DYNAMIC-PROPERTY
 11.0 JSON Object Model as classes
 11.2 REST Adapter can call into class directly, singleton-

run
 11.4 Serialization between ABL Client and AppServer
 11.4 Ability to THROW errors from AppServer to client
 11.6, expected later in 2015

https://community.progress.com/community_groups/ope
nedge_general/m/documents/1823.aspx

 Generally new language features are more often added
as objects and not as new statements

https://community.progress.com/community_groups/openedge_general/m/documents/1823.aspx

OO ABL and AppServer

 The AppServer protocol only speaks procedural
 Every client needs to call into procedures

(except the REST Adapter)
 Activate, Deactivate, Connect, Disconnect

procedures
 AppServer may use objects from there on
 Can only pass an object as a parameter

between AppServer and ABL Client from 11.4 on

Lists, Enumerations, Serialization 9

OO ABL and AppServer

 Can‘t remotely call into an object like we can into
a remote persistent procedure (not
recommended anyway, but possible,
unfortunately used a lot)

 OO ABL and AppServer limitation typically
solved by OERA patterns:
– Service Adapter on the client
– Service Interface on the AppServer

Lists, Enumerations, Serialization 10

Agenda

 Introduction – OO ABL
 OO ABL’s missing features
 Lists of Objects
 Generic Lists of Objects
 List Enumerators
 Enumerations
 Object Serialization

Lists, Enumerations, Serialization 11

OO ABL‘s missing features

 Lists, Dictionaries
 Generic Lists and Dictionaries
 LINQ
 Enums
 Reflection: Ability to query methods and

properties of an object or a class
 Ability to query a classes, properties, methods

annotations at runtime
 Serialization for non ABL clients
 Ability to store objects (structures) in DB
Lists, Enumerations, Serialization 12

Risk with OO ABL‘s missing features

 Poor OO code …, too many workarounds
 ABL may be seen as a legacy code only

language
 Difficulty adopting patterns or sample code form

other OO languages to ABL
 Acceptance problems of OO ABL at young

developers
 Modernization decisions may be based on

missing OO features, ignoring the strength of the
ABL in so many other aspects

Lists, Enumerations, Serialization 13

Agenda

 Introduction – OO ABL
 OO ABL’s missing features
 Lists of Objects
 Generic Lists of Objects
 List Enumerators
 Enumerations
 Object Serialization

Lists, Enumerations, Serialization 14

Lists of Objects

 ABL variable may reference a single object
instance at a time

 ABL property may reference a single object at a
time

Lists, Enumerations, Serialization 15

List of Objects

 What if we are successful and win a second
customer? Or a third? Or more?

 What if a customer may have multiple addresses?

 We can use arrays (EXTENT’s) of Objects

Lists, Enumerations, Serialization 16

Referencing objects in an Array

Lists, Enumerations, Serialization 17

Demo

 Populating Array of Customers

Lists, Enumerations, Serialization 18

Array drawbacks

 Arrays are fixed in extent size once they contain
data

 To re-size an Array (add another item or remove
an item) you have to re-initialize the array
causing the Array to loose all data

 An Array is considered a single variable – so all
object references (pointers) are required to be
within 32k
– A rather theoretical limitation, I believe

Lists, Enumerations, Serialization 19

Alternative variable length Lists

 Linked lists

 Temp-Table with Progress.Lang.Object field

Lists, Enumerations, Serialization 20

Linked Lists

 Customer object needs additional property to
reference next item in the list

 Disadvantage: Customer Object needs to
manage list as well, no separation of concern

Lists, Enumerations, Serialization 21

Customer 1 Customer 2 Customer 3 Customer 4 ?

Linked lists

 Customer object kept as it
 Specialized “List Item” object instances that

reference “their” customer instance and the next
list item

Lists, Enumerations, Serialization 22

Customer 1 Customer 2 Customer 3 Customer 4

List Item 1 List Item 2 List Item 3 List Item 4 ?

Linked Lists

 Allows all kind of List manipulations
 Add instance (at the end)
 Insert instance (anywhere in the list)
 Delete reference

 Requires additional object for list item
 Relatively complex implementation

– not very ABL’ish – we don’t use ABL because
we are keen to manipulate pointer values

Lists, Enumerations, Serialization 23

List based on Temp-Table

 Temp-Tables may contain fields of type
„Progress.Lang.Object“ to reference objects

 Temp-Tables may contain any number of
records (0 .. n)

 Temp-Tables provide the “ABL”-ishst way of
managing variable a set of object references

Lists, Enumerations, Serialization 24

Typical List class methods

 Add (Progress.Lang.Object)
 Add (Progress.Lang.Object[])
 Clear ()
 LOGICAL Contains (Progress.Lang.Object)
 Progress.Lang.Object GetItem (INTEGER)
 Remove (Progress.Lang.Object)
 RemoveAt (INTEGER)
 Object[] ToArray ()

 PROPERTY: Count (INTEGER)
Lists, Enumerations, Serialization 25

Reducing Temp-Table overhead

 OO may need lots of lists …
 Temp-Tables with small amount of records

disproportionate overhead (dbi file growth)
 Issue relaxed for empty temp-tables in OE11
 Solution: break encapsulation – use shared

temp-table

Lists, Enumerations, Serialization 26

Reducing Temp-Table overhead

 OO may need lots of lists …
 Temp-Tables with small amount of records

disproportionate overhead (dbi file growth)
 Issue relaxed for empty temp-tables in OE11
 Solution: break encapsulation – use shared

temp-table

Lists, Enumerations, Serialization 27

Adding Customers to List class

Lists, Enumerations, Serialization 28

Customer class with List of Addresses

Lists, Enumerations, Serialization 29

Sample

 Customer class with list of Addresses
 Loop through List of Customers
 Review List class methods

Lists, Enumerations, Serialization 30

Agenda

 Introduction – OO ABL
 OO ABL’s missing features
 Lists of Objects
 Generic Lists of Objects
 List Enumerators
 Enumerations
 Object Serialization

Lists, Enumerations, Serialization 31

Generic Lists of Objects

 Standard List (of Progress.Lang.Object) two
problems
– You can‘t enforce item type during Add
– You have to cast to item type after GetItem()

Lists, Enumerations, Serialization 32

Standard List can‘t enforce item type

 Can add Address to oCustomers and add
Customer to Addresses

Lists, Enumerations, Serialization 33

Standard List requires CAST on GetItem()

 Need to CAST GetItem(1) of oCustomers to
Customer

 Need to CAST GetItem(1) of
oCustomers:Addresses:GetItem(1) to Address

Lists, Enumerations, Serialization 34

Need for ListCustomer and ListAddress

 Need specific List‘s for Customer and Address:

 ListCustomer
– Add (Customer)
– Customer GetItem (INTEGER)

 ListAddress
– Add (Address)
– Address GetItem (INTEGER)

Lists, Enumerations, Serialization 35

Generic Types in C#

 List<T>

Lists, Enumerations, Serialization 36

Generic Types in C# (or GUI for .NET)

 DEFINE VARIABLE oList AS “List<Customer>” .
 On the fly defined …
 oList:Add (Customer)
 oList[0]:Name -> no CAST required

 Add enforces list type
 GetItem does not require CAST to List Type

 ABL lacks capabilities for ABL Generic Types
Lists, Enumerations, Serialization 37

Generic List in the ABL

 Generic List implementation using Include File …

Lists, Enumerations, Serialization 38

Preprocessor Listing

Lists, Enumerations, Serialization 39

Access Customer and Address

Lists, Enumerations, Serialization 40

Agenda

 Introduction – OO ABL
 OO ABL’s missing features
 Lists of Objects
 Generic Lists of Objects
 List Enumerators
 Enumerations
 Object Serialization

Lists, Enumerations, Serialization 41

Agenda

 Introduction – OO ABL
 OO ABL’s missing features
 Lists of Objects
 Generic Lists of Objects
 List Enumerators
 Enumerations
 Object Serialization

Lists, Enumerations, Serialization 42

List Enumerators

 Typical requirement to process all or some
elements of the list in sequence

 One option to loop from 1 to oList:Count with a
counter

Lists, Enumerations, Serialization 43

Enumerator in C#

 C# allows to "foreach" a list or other sets that are
IEnumerable

 Loops through all Controls in this.Controls (List)
 http://msdn.microsoft.com/en-

us/library/ttw7t8t6(v=vs.71).aspx

Lists, Enumerations, Serialization 44

http://msdn.microsoft.com/en-us/library/ttw7t8t6(v=vs.71).aspx

.NET Enumerator from ABL (GUI for .NET)

 This is the ABL code similar to the C# foreach

 First, we get the „Enumerator“ for the List
 That is an object, that provides a reference

(Current) to an item and iterates over the items
in the List

 Similar, to the ABL FOR EACH on a BUFFER
Lists, Enumerations, Serialization 45

.NET Enumerator from ABL (GUI for .NET)

 Let‘s write Consultingwerk/foreach.i (Include)

Lists, Enumerations, Serialization 46

{3} not used, only
used to fill up syntax

and match c#

Code Completion on
properties of oControl works in

recent Versions of PDSOE,
did not work in 10.2B

Enumerator implementation for ABL List

 IEnumerable Interface with GetEnumerator()
method

 Enumerator instance needs to provide method
to
– Reset()
– MoveNext()

 Property
– Current

 As List is implemented using ABL Temp-Table,
we can create BUFFER and QUERY

Lists, Enumerations, Serialization 47

Lists GetEnumerator() method

Lists, Enumerations, Serialization 48

Enumerators Reset() method

Lists, Enumerations, Serialization 49

Enumerators MoveNext() method

Lists, Enumerations, Serialization 50

Object Reference
from List Temp-

Table

foreachABL.i

 We need a special version of foreach.i – simply
because we cannot use the same IEnumerator
interface for pure ABL and ABL with GUI for
.NET

 But as we mimic .NET Enumerators, the code
looks very similar

Lists, Enumerations, Serialization 51

Enumerating Customers and Addresses

 No need to remember that ABL starts counting
with 1 and .NET starts counting with 0

Lists, Enumerations, Serialization 52

Include File in
PROPATH, no .i

extention

Querying while iterating List

 ABL does not provide ability to Query objects
 Progress.Lang.Object field in Temp-Table can

only be queried on object reference (same
pointer)

 We could extend List implementation to include
Filter criteria

 Probably would need multiple Filter criteria,
would require to sync Filter criteria in List
implementation with referenced objects

 Ultimately leads to redundancy of data in List
temp-table, questioning the Object at all

Lists, Enumerations, Serialization 53

LINQ in C#

 „Language INtegrated Query“
 Set of object + language (compiler features to

provide syntax)

Lists, Enumerations, Serialization 54

ABL version of LINQ?

 As a matter of fact most lists will be rather small
 All data is in memory anyway (Objects not stored

in DBI file as Temp-Tables are)
 It won’t cause significant overhead if we iterate

the List and just NEXT those records that don’t
match the selection criteria (negative filtering)

Lists, Enumerations, Serialization 55

linqABL.i

 Combines the benefits of foreachABL.i with
filtering using positive expressions

Lists, Enumerations, Serialization 56

Preprocessor view

Lists, Enumerations, Serialization 57

Filter criteria
added

Agenda

 Introduction – OO ABL
 OO ABL’s missing features
 Lists of Objects
 Generic Lists of Objects
 List Enumerators
 Enumerations
 Object Serialization

Lists, Enumerations, Serialization 58

Enumeration

 Often named „Enum“ in other languages
 Set of related values of the same type

– Weekdays
– Months
– Gender
– AddressType

 Each entry is an object instance itself, it‘s a
member of a set of "values"

 Enumeration may be Enumerable … do we start
to exaggerate?

Lists, Enumerations, Serialization 59

Enumeration

 Typically representing a Name (Text
representation) and a number (for ordering and
comparison)

 Enumeration itself typically set of static
references to member instances

 Much safer than Weekday based on INTEGER
or OrderStatus based on CHARACTER

 Compiler detects typos, no need to runtime test
 Represents a type of it’s own: strong typing of

object properties or method parameters!
Lists, Enumerations, Serialization 60

Enum in C#

 Enum represents a value type, each entry
stands for a value

 We can define variables of type Weekday
 Those can hold one of the Weekdays or null

Lists, Enumerations, Serialization 61

Enums in the ABL

 ABL currently does not have support for Emuns
 Enum can be build using single class

– Static portion representing the Enumeration
– Instance for each member
– A single instance created for each member

(singleton style) accessed via Properties of
Enum

Lists, Enumerations, Serialization 62

Instance
members

Lists, Enumerations, Serialization 63

STATIC

Instance
members

A task for another Include file 

Lists, Enumerations, Serialization 64

Demo

 Create a new Enum using Consultingwerk new
Class Template in PDSOE

 Review TermsEnum in Customer
 Filter oCustomers on TermsEnum

Lists, Enumerations, Serialization 65

PDSOE New Class Macro

Lists, Enumerations, Serialization 66

Custom Class
Template triggered by

base class name

Agenda

 Introduction – OO ABL
 OO ABL’s missing features
 Lists of Objects
 Generic Lists of Objects
 List Enumerators
 Enumerations
 Object Serialization

Lists, Enumerations, Serialization 67

Object Serialization

 Transforming an object instance (or a set of
objects) into a form that can be persisted (disk,
database, etc.) or be send to another system
(aka marshalling)

 Deserialization is the process of converting this
form back into an object – typically a new object
instance, eventually on a different system or a
different time (aka unmarshalling)

 Systems involved may be AppServer and Client
 Serialization is about Data in an object, not the

implementation
Lists, Enumerations, Serialization 68

Serialization formats

 Need to be understood by sender and receiver
 Binary form
 Text based formats

– XML
– JSON (from OpenEdge 11 on)
– CSV
– …

 Morse code

Lists, Enumerations, Serialization 69

OpenEdge Serialization in 11.4

 Only supported between ABL Client and
AppServer

 Very well suited for parameter objects or
throwing errors from the AppServer to the client

 Does not support serialization of objects to other
clients types
– XML serialization for .NET
– JSON serialization for REST/Kendo UI/etc.

 So we are using Progress’ serialization when it
fits and our own when it does not

Lists, Enumerations, Serialization 70

Walkthrough JSON Serializable object

 OpenEdge 11 provides JSON Object Model,
flexible way of parsing and generating JSON
Strings

 JSON is a LONGCHAR String, so it can be
stored and send to another system

Lists, Enumerations, Serialization 71

Walkthrough JSON Serializable object

 We typically want to serialize properties of an
object and when we can send them to another
system, it’s a fair assumption that those properties
are PUBLIC – transport cannot hide privates

 Serializing other members (e.g. temp-table would
be possible as well, but not required by us)

 OpenEdge 11 has DYNAMIC-PROPERTY – so
we can query and assign properties dynamically

 But we don’t know what properties are available
– No reflection in ABL (yet)

Lists, Enumerations, Serialization 72

Serialization, again with an include file

 We maintain our own property specs – in a
simple comma delimited list

 We use include file to consistently define
property and property specs

Lists, Enumerations, Serialization 73

Consultingwerk.JsonSerializable Customer

Lists, Enumerations, Serialization 74

Serializing Customer

Lists, Enumerations, Serialization 75

Lists, Enumerations, Serialization 76

Demo

 Code Review Consultingwerk.JsonSerializable

Lists, Enumerations, Serialization 77

Deserializing Customer

Lists, Enumerations, Serialization 78

Questions

79http://www.consultingwerk.de/

Don‘t miss my other presentations

 Monday 11.00: Telerik .NET for Infragistics
Users

 Monday 16.45: DIY: Lists, Enumerators,
Enumerations, Serialization

 Tuesday 11.00: Modernization – the
SmartComponent Library

 Tuesday 14.15: Structured Error Handling
 Wednesday 11.00: Telerik Kendo UI with

WebSpeed

Lists, Enumerations, Serialization 80

Lists, Enumerations, Serialization 81

	Foliennummer 1
	Foliennummer 2
	Consultingwerk Ltd.
	Warning!
	Agenda
	Introduction - OO ABL
	OO ABL Timeline
	OO ABL Timeline
	OO ABL and AppServer
	OO ABL and AppServer
	Agenda
	OO ABL‘s missing features
	Risk with OO ABL‘s missing features
	Agenda
	Lists of Objects
	List of Objects
	Referencing objects in an Array
	Demo
	Array drawbacks
	Alternative variable length Lists
	Linked Lists
	Linked lists
	Linked Lists
	List based on Temp-Table
	Typical List class methods
	Reducing Temp-Table overhead
	Reducing Temp-Table overhead
	Adding Customers to List class
	Customer class with List of Addresses
	Sample
	Agenda
	Generic Lists of Objects
	Standard List can‘t enforce item type
	Standard List requires CAST on GetItem()
	Need for ListCustomer and ListAddress
	Generic Types in C#
	Generic Types in C# (or GUI for .NET)
	Generic List in the ABL
	Preprocessor Listing
	Access Customer and Address
	Agenda
	Agenda
	List Enumerators
	Enumerator in C#
	.NET Enumerator from ABL (GUI for .NET)
	.NET Enumerator from ABL (GUI for .NET)
	Enumerator implementation for ABL List
	Lists GetEnumerator() method
	Enumerators Reset() method
	Enumerators MoveNext() method
	foreachABL.i
	Enumerating Customers and Addresses
	Querying while iterating List
	LINQ in C#
	ABL version of LINQ?
	linqABL.i
	Preprocessor view
	Agenda
	Enumeration
	Enumeration
	Enum in C#
	Enums in the ABL
	Foliennummer 63
	A task for another Include file 
	Demo
	PDSOE New Class Macro
	Agenda
	Object Serialization
	Serialization formats
	OpenEdge Serialization in 11.4
	Walkthrough JSON Serializable object
	Walkthrough JSON Serializable object
	Serialization, again with an include file
	Consultingwerk.JsonSerializable Customer
	Serializing Customer
	Foliennummer 76
	Demo
	Deserializing Customer
	Questions
	Don‘t miss my other presentations
	Foliennummer 81

