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Consultingwerk Ltd.

 Independent IT consulting organization
 Focusing on OpenEdge and related technology
 Located in Cologne, Germany
 Customers in Europe, North America, Australia 

and South Africa
 Vendor of tools and consulting programs
 25 years of Progress experience (V5 … OE11)
 Specialized in GUI for .NET, OO, Software 

Architecture, Application Integration
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Warning!

 If you believe include files
should not be used with class
files at all, you are probably in 
the wrong presentation

 You will see how include files
can be used to enhance 
OO ABL usability and help
focus on the real problem 
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Agenda

 Introduction – OO ABL 
 OO ABL’s missing features
 Lists of Objects
 Generic Lists of Objects
 List Enumerators
 Enumerations
 Object Serialization
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Introduction - OO ABL

 OOABL is not a separate language, it‘s a feature 
of the ABL (aka 4GL available since 1982)

 OO ABL and procedural cooperate
 Procedures can 

– create Object instances
– Invoke methods of Objects
– Get/Set properties
– Subscribe to events from classes/events

 Procedures can use classes as parameters
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OO ABL Timeline
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 10.1A first implementation, classes, objects, methods
 10.1B Interfaces, USING statement, properties
 10.1C Static members, structured error-handling, 

properties in Interfaces, DYNAMIC-NEW
 10.2A GUI for .NET, garbage collection for objects 

(anything reference by a WIDGET-HANDLE or COM-
HANDLE is not an object)

 10.2B Abstract classes, abstract members, .NET 
generic type definition, strong typed events, reflection 
part I



OO ABL Timeline
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 11.0 DYNAMIC-PROPERTY
 11.0 JSON Object Model as classes
 11.2 REST Adapter can call into class directly, singleton-

run
 11.4 Serialization between ABL Client and AppServer
 11.4 Ability to THROW errors from AppServer to client
 11.6, expected later in 2015

https://community.progress.com/community_groups/ope
nedge_general/m/documents/1823.aspx

 Generally new language features are more often added 
as objects and not as new statements

https://community.progress.com/community_groups/openedge_general/m/documents/1823.aspx


OO ABL and AppServer

 The AppServer protocol only speaks procedural
 Every client needs to call into procedures 

(except the REST Adapter)
 Activate, Deactivate, Connect, Disconnect 

procedures
 AppServer may use objects from there on
 Can only pass an object as a parameter 

between AppServer and ABL Client from 11.4 on
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OO ABL and AppServer

 Can‘t remotely call into an object like we can into 
a remote persistent procedure (not 
recommended anyway, but possible, 
unfortunately used a lot)

 OO ABL and AppServer limitation typically 
solved by OERA patterns:
– Service Adapter on the client
– Service Interface on the AppServer
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OO ABL‘s missing features

 Lists, Dictionaries
 Generic Lists and Dictionaries
 LINQ
 Enums
 Reflection: Ability to query methods and 

properties of an object or a class
 Ability to query a classes, properties, methods 

annotations at runtime
 Serialization for non ABL clients
 Ability to store objects (structures) in DB
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Risk with OO ABL‘s missing features

 Poor OO code …, too many workarounds
 ABL may be seen as a legacy code only 

language
 Difficulty adopting patterns or sample code form 

other OO languages to ABL
 Acceptance problems of OO ABL at young 

developers
 Modernization decisions may be based on 

missing OO features, ignoring the strength of the 
ABL in so many other aspects
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Lists of Objects

 ABL variable may reference a single object 
instance at a time

 ABL property may reference a single object at a 
time 
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List of Objects

 What if we are successful and win a second 
customer? Or a third? Or more?

 What if a customer may have multiple addresses?

 We can use arrays (EXTENT’s) of Objects
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Referencing objects in an Array
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Demo

 Populating Array of Customers
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Array drawbacks

 Arrays are fixed in extent size once they contain 
data

 To re-size an Array (add another item or remove 
an item) you have to re-initialize the array 
causing the Array to loose all data

 An Array is considered a single variable – so all 
object references (pointers) are required to be 
within 32k
– A rather theoretical limitation, I believe

Lists, Enumerations, Serialization 19



Alternative variable length Lists

 Linked lists

 Temp-Table with Progress.Lang.Object field
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Linked Lists

 Customer object needs additional property to 
reference next item in the list

 Disadvantage: Customer Object needs to 
manage list as well, no separation of concern
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Linked lists

 Customer object kept as it
 Specialized “List Item” object instances that 

reference “their” customer instance and the next 
list item
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Customer 1 Customer 2 Customer 3 Customer 4

List Item 1 List Item 2 List Item 3 List Item 4 ?



Linked Lists

 Allows all kind of List manipulations
 Add instance (at the end) 
 Insert instance (anywhere in the list)
 Delete reference

 Requires additional object for list item
 Relatively complex implementation 

– not very ABL’ish – we don’t use ABL because 
we are keen to manipulate pointer values
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List based on Temp-Table

 Temp-Tables may contain fields of type 
„Progress.Lang.Object“ to reference objects

 Temp-Tables may contain any number of 
records (0 .. n)

 Temp-Tables provide the “ABL”-ishst way of 
managing variable a set of object references
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Typical List class methods

 Add (Progress.Lang.Object)
 Add (Progress.Lang.Object[])
 Clear ()
 LOGICAL Contains (Progress.Lang.Object)
 Progress.Lang.Object GetItem (INTEGER)
 Remove (Progress.Lang.Object)
 RemoveAt (INTEGER)
 Object[] ToArray ()

 PROPERTY: Count (INTEGER)
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Reducing Temp-Table overhead 

 OO may need lots of lists …
 Temp-Tables with small amount of records 

disproportionate overhead (dbi file growth)
 Issue relaxed for empty temp-tables in OE11
 Solution: break encapsulation – use shared 

temp-table
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Adding Customers to List class
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Customer class with List of Addresses
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Sample

 Customer class with list of Addresses
 Loop through List of Customers
 Review List class methods
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Generic Lists of Objects

 Standard List (of Progress.Lang.Object) two 
problems
– You can‘t enforce item type during Add
– You have to cast to item type after GetItem()
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Standard List can‘t enforce item type

 Can add Address to oCustomers and add 
Customer to Addresses
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Standard List requires CAST on GetItem()

 Need to CAST GetItem(1) of oCustomers to 
Customer

 Need to CAST GetItem(1) of 
oCustomers:Addresses:GetItem(1) to Address
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Need for ListCustomer and ListAddress

 Need specific List‘s for Customer and Address:

 ListCustomer
– Add (Customer)
– Customer GetItem (INTEGER)

 ListAddress
– Add (Address)
– Address GetItem (INTEGER)
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Generic Types in C#

 List<T>
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Generic Types in C# (or GUI for .NET)

 DEFINE VARIABLE oList AS “List<Customer>” .
 On the fly defined …
 oList:Add (Customer)
 oList[0]:Name   -> no CAST required

 Add enforces list type
 GetItem does not require CAST to List Type

 ABL lacks capabilities for ABL Generic Types
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Generic List in the ABL

 Generic List implementation using Include File …
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Preprocessor Listing
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Access Customer and Address
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List Enumerators

 Typical requirement to process all or some 
elements of the list in sequence

 One option to loop from 1 to oList:Count with a 
counter

Lists, Enumerations, Serialization 43



Enumerator in C#

 C# allows to "foreach" a list or other sets that are 
IEnumerable

 Loops through all Controls in this.Controls (List)
 http://msdn.microsoft.com/en-

us/library/ttw7t8t6(v=vs.71).aspx
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.NET Enumerator from ABL (GUI for .NET)

 This is the ABL code similar to the C# foreach

 First, we get the „Enumerator“ for the List
 That is an object, that provides a reference 

(Current) to an item and iterates over the items 
in the List

 Similar, to the ABL FOR EACH on a BUFFER
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.NET Enumerator from ABL (GUI for .NET)

 Let‘s write Consultingwerk/foreach.i (Include) 
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{3} not used, only 
used to fill up syntax 

and match c#

Code Completion on 
properties of oControl works in 

recent Versions of PDSOE, 
did not work in 10.2B



Enumerator implementation for ABL List

 IEnumerable Interface with GetEnumerator() 
method

 Enumerator instance needs to provide method 
to 
– Reset()
– MoveNext()

 Property 
– Current

 As List is implemented using ABL Temp-Table, 
we can create BUFFER and QUERY
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Lists GetEnumerator() method

Lists, Enumerations, Serialization 48



Enumerators Reset() method
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Enumerators MoveNext() method
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Object Reference 
from List Temp-

Table



foreachABL.i

 We need a special version of foreach.i – simply 
because we cannot use the same IEnumerator
interface for pure ABL and ABL with GUI for 
.NET

 But as we mimic .NET Enumerators, the code 
looks very similar
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Enumerating Customers and Addresses

 No need to remember that ABL starts counting 
with 1 and .NET starts counting with 0
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Include File in 
PROPATH, no .i 

extention



Querying while iterating List

 ABL does not provide ability to Query objects
 Progress.Lang.Object field in Temp-Table can 

only be queried on object reference (same 
pointer)

 We could extend List implementation to include 
Filter criteria 

 Probably would need multiple Filter criteria, 
would require to sync Filter criteria in List 
implementation with referenced objects

 Ultimately leads to redundancy of data in List 
temp-table, questioning the Object at all
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LINQ in C#

 „Language INtegrated Query“
 Set of object + language (compiler features to 

provide syntax)
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ABL version of LINQ?

 As a matter of fact most lists will be rather small
 All data is in memory anyway (Objects not stored 

in DBI file as Temp-Tables are)
 It won’t cause significant overhead if we iterate 

the List and just NEXT those records that don’t 
match the selection criteria (negative filtering)
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linqABL.i

 Combines the benefits of foreachABL.i with 
filtering using positive expressions 
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Preprocessor view

Lists, Enumerations, Serialization 57

Filter criteria
added
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Enumeration

 Often named „Enum“ in other languages
 Set of related values of the same type

– Weekdays
– Months
– Gender
– AddressType

 Each entry is an object instance itself, it‘s a 
member of a set of "values"

 Enumeration may be Enumerable … do we start 
to exaggerate?
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Enumeration

 Typically representing a Name (Text 
representation) and a number (for ordering and 
comparison)

 Enumeration itself typically set of static 
references to member instances

 Much safer than Weekday based on INTEGER 
or OrderStatus based on CHARACTER

 Compiler detects typos, no need to runtime test
 Represents a type of it’s own: strong typing of 

object properties or method parameters!
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Enum in C#

 Enum represents a value type, each entry 
stands for a value

 We can define variables of type Weekday
 Those can hold one of the Weekdays or null

Lists, Enumerations, Serialization 61



Enums in the ABL

 ABL currently does not have support for Emuns
 Enum can be build using single class

– Static portion representing the Enumeration
– Instance for each member
– A single instance created for each member 

(singleton style) accessed via Properties of 
Enum
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Instance 
members
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STATIC

Instance 
members



A task for another Include file 
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Demo

 Create a new Enum using Consultingwerk new 
Class Template in PDSOE

 Review TermsEnum in Customer
 Filter oCustomers on TermsEnum
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PDSOE New Class Macro
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Custom Class 
Template triggered by 

base class name
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Object Serialization

 Transforming an object instance (or a set of 
objects) into a form that can be persisted (disk, 
database, etc.) or be send to another system 
(aka marshalling)

 Deserialization is the process of converting this 
form back into an object – typically a new object 
instance, eventually on a different system or a 
different time (aka unmarshalling)

 Systems involved may be AppServer and Client
 Serialization is about Data in an object, not the 

implementation
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Serialization formats

 Need to be understood by sender and receiver
 Binary form
 Text based formats

– XML
– JSON (from OpenEdge 11 on)
– CSV
– …

 Morse code
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OpenEdge Serialization in 11.4

 Only supported between ABL Client and 
AppServer

 Very well suited for parameter objects or 
throwing errors from the AppServer to the client

 Does not support serialization of objects to other 
clients types
– XML serialization for .NET
– JSON serialization for REST/Kendo UI/etc.

 So we are using Progress’ serialization when it 
fits and our own when it does not
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Walkthrough JSON Serializable object

 OpenEdge 11 provides JSON Object Model, 
flexible way of parsing and generating JSON 
Strings

 JSON is a LONGCHAR String, so it can be 
stored and send to another system
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Walkthrough JSON Serializable object

 We typically want to serialize properties of an 
object and when we can send them to another 
system, it’s a fair assumption that those properties 
are PUBLIC – transport cannot hide privates

 Serializing other members (e.g. temp-table would 
be possible as well, but not required by us)

 OpenEdge 11 has DYNAMIC-PROPERTY – so 
we can query and assign properties dynamically

 But we don’t know what properties are available
– No reflection in ABL (yet)
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Serialization, again with an include file

 We maintain our own property specs – in a 
simple comma delimited list

 We use include file to consistently define 
property and property specs 
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Consultingwerk.JsonSerializable Customer

Lists, Enumerations, Serialization 74



Serializing Customer
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Demo

 Code Review Consultingwerk.JsonSerializable
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Deserializing Customer
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Questions
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Don‘t miss my other presentations

 Monday 11.00: Telerik .NET for Infragistics 
Users

 Monday 16.45: DIY: Lists, Enumerators, 
Enumerations, Serialization

 Tuesday 11.00: Modernization – the
SmartComponent Library

 Tuesday 14.15: Structured Error Handling 
 Wednesday 11.00: Telerik Kendo UI with

WebSpeed
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