Large Databases in Practice

Tales from the land of the northern lights

Matti Kiviranta

Qvantel Business Solutions Oy

Shortly about the speaker

- Coming from freezing cold country of Finland
 - About 3900 miles from here
 - Today's weather 4-22°C (39-72°F)
- Progress OpenEdge user since 2007 (10.1A)
- Started as OpenEdge developer
- Now a Senior Database Administrator
- Works also with other database engines such as MySQL & MariaDB.

Qvantel

- Based in Finland
- Provides systems and services for mobile operators sales, product management, customer care and billing.
- Customers
 - Yoigo

Disclaimer

- Shown values and settings are from various production system.
- YMMV, these might not work in your environment.

Qvantel RBS product

- RBS (Rating and Billing System) is Qvantel's product suite that is running on top of OpenEdge.
- Product uses multiple databases in which clients take simultaneous connections.
- Processes millions of new records daily.

Shortly about environments

- Linux and Solaris environments
- Largest database ever was over 2 terabytes.
- Largest currently running database is 1464 gigabytes.
- Daily database growth in single environment is up to 8.9 gigabytes.
- Largest growth recorded has been over 10 gigabytes.

Proutil database –C dbanalysis

Table Records Size

PUB.D 8 590 845 958 1.9T

Total 1.9T 81.3 % 446.8G 18.7 % 2.3T 100%

• Single database, single table.

Examples of parameters we use

- -L 100000
- -B 9000000
- -B2 1000000
- -aiarcdir /aiarchive/xx
- -DBService replserv
- -pica 8192
- -pf ../general.pf

General.pf

- -indexrangesize 711
- -tablerangesize 288
- -aiarcdircreate
- -aiarcinterval 3600
- -Mm 8192
- -spin 100000
- -semsets 20
- -napmax 250
- -lruskips 100

Various buffers

Layer	Time	# of Recs	# of Ops	Cost per Op	Relative
Progress to -B	0.96	100,000	203,473	0.000005	1
-B to FS Cache	10.24	100,000	26,711	0.000383	75
FS Cache to SAN	5.93	100,000	26,711	0.000222	45
-B to SAN Cache*	11.17	100,000	26,711	0.000605	120
SAN Cache to Disk	200.35	100,000	26,711	0.007500	1500
-B to Disk	211.52	100,000	26,711	0.007919	1585

[©] Tom Bascom

Know your environment

- Know your operating systems limitations
- Know your environments limits
- Know required tune-ups for your system
- Collect history information about the system

History!?

01/28@05:43 BACKUP114: (1362) Full backup started.

01/28@07:54 BACKUP114: (13625) Wrote a total of 508954 backup blocks using 132.0 GBytes of media.

01/28@07:54 BACKUP114: (1364) Full backup successfully completed.

Total time 2h 11min

02/08@05:36 BACKUP 57: (1362) Full backup started.

02/08@07:30 BACKUP 57: (13625) Wrote a total of 520831 backup blocks using 135.1 GBytes of media.

02/08@07:30 BACKUP 57: (1364) Full backup successfully completed.

Total time 1h 54min

02/18@16:13 BACKUP 57: (1362) Full backup started.

02/18@23:14 BACKUP 57: (13625) Wrote a total of 520831 backup blocks using 135.1 GBytes of media.

02/18@23:14 BACKUP 57: (1364) Full backup successfully completed.

Total time 7h 1min!

Checkpoints

Ckpt	Database Writes								
No. Time	Len	Freq	Dirty	CPT Q	Scan	APW Q Flu	shes	Duration	Sync Time
3104 08:51:33	283	Θ	195347	84056	40	272	0	0.69	0.06
3103 08:38:51	726	762	195288	203066	3508	647	Θ	0.67	0.04
3102 08:25:28	765	803	193021	200814	3381	557	Θ	0.66	0.04

Promon after debug command

Ckpt Database Writes												
No. Time	Len	Freq	Dirty	CPT Q	Scan	APW Q Flι	ıshes	Duration	Sync Time	ClFil%	FuzzTm	NumChkpt
3104 08:51:33	291	0	195347	86369	40	282	Θ	0.69	0.06	37	291	86616
3103 08:38:51	726	762	195288	203066	3508	647	0	0.67	0.04	100	726	203454
3102 08:25:28	765	803	193021	200814	3381	557	Θ	0.66	0.04	100	765	201165

VST tables

- _actsummary
 - Single day values (all databases):
 - Db read: 15 424 789 709
 - Records read: 7 061 389 560

- tablestat & indexstat
- _usertablestat & _userindexstat

Have you updated?

- Hardware
- Operating system
- OpenEdge

REMEMBER TO TEST BEFORE YOU CHANGE PRODUCTION!

Something completely different

TZ, Why does it matter?

- Environment variable TZ, Time zone
- If left unset, will cause extra system calls to see what is the local time zone.
- Important especially on Linux due to glibc futex and signal handling.
- How to set it?

```
vi /etc/profile.d/tz.sh
# Set TZ for Helsinki, Finland (EET/EEST)
export TZ="Europe/Helsinki"
```

PAUSE. TODAY. PAUSE.

NO TZ

- poll([{fd=0, events=POLLIN|
 POLLPRI}], 1, -1) = 1 ([{fd=0, revents=POLLIN}])
- stat("/etc/localtime", {st_mode=S_IFREG|0644, st_size=1892, ...})
- ioctl(0, TCFLSH, 0)
- write(1, "\33[24;1HPress space bar to continue.", 35)

TZ set

poll([{fd=0, events=POLLIN| POLLPRI}], 1, -1) = 1 ([{fd=0, revents=POLLIN}])

- ioctl(0, TCFLSH, 0)
- write(1, "\33[24;1HPress space bar to continue.", 35)

Case X

- MariaDB backend
- Web application
- Database connections go through a proxy for monitoring purposes.

Issue on hand:

- Queues starting to grow to application servers regardless of application in question.
- Page/response generation times start to increase.

Case X continued

- Number of database connections increase as more applications are active.
- Database response times are still reasonable when checked manually.
- Queries per minute does stays about same during this time. Higher number of queries have been processed just fine.

So where is the problem?

Looking for the issue

```
write(23, "\{\0\0\0\SELECT .. FROM `tablex` .. ", 127) = 127 <0.000068> read(23, "\{\1...\0", 16384) = 56 <0.005376> write(23, "\{\1...\0\}", 5) = 5 <0.000065> read(23, "\{\0\0\0\0\0\0\0\0\0\0", 16384) = 11 <0.004470>
```

```
write(24, "\{\0\0\0\3SELECT .. FROM `tablex` .. ", 127) = 127 <0.000025> read(24, "\{\1.\0\, 16384) = 56 <0.023255> write(24, "\{\1.\0\, 5) = 5 <0.000045> read(24, "\{\0\0\, 1\{\0\, 10\{\0\, 16384) = 11 <0.020023>
```

Fixing the issue

- Application creates connections to the database per every page load.
- As the number of connections was high enough (netstat –nt|wc –l gave over 6000) proxy was using most of its time in TCP handling.
- Luckily this could be corrected by adding a extra proxy to another port for load balancing.

How did it look after

```
write(23, "\{0\0\0\3SELECT .. FROM `tablex` .. ", 127) = 127 <0.000027> read(23, "\{1...\0", 16384) = 56 <0.000450> write(23, "\{1...\0\}", 5) = 5 <0.000029> read(23, "\{7\0\0\1\0\0\0\1\0\0\0", 16384) = 11 <0.000169>
```

Improvement from 0.020023 to 0.000169 seconds.

Kysymyksiä?

QUESTIONS?

Kiitos Thank you!

Matti Kiviranta matti.kiviranta@qvantel.com