
OpenEdge 12.0

Database Performance

and Server Side Joins

Richard Banville

Fellow, OpenEdge Development

October 26, 2018

2© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Data Access Performance Enhancements

▪ Increasing overall throughput

• Provide more concurrency

• More efficient use of resources

– Speed vs space

– Sharing, caching, optimize I/O, etc.

▪ Mechanisms

• Improve algorithms (or make better guesses)

• Limit contention

– Asynchronous operations

– Decrease time blocking others

– Limit Time blocked

– Eliminate need to block altogether

Database development

perspective

3© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Data Access Performance Enhancements

• Random data access for large deployments

• Concurrency for table scans of small tables

BHT
Enhancements

• Concurrent processing of remote client
requests

• Not parallel statement execution

Threaded DB
Server

• Join operations performed server side

• Improved performance via decreased
network traffic

Server Side
Joins

4© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Additional BHT improvements

▪ What are BHTs?

• Buffer pool hash table

latches protecting –B

look ups

- bucket values

- hash chains

(value collisions)

• Growing family

Progression of 1, 4, 256,

1024 and still contention

is seen; Why?

Hash Table (-hash)

BHT latch family of 1024

List of

(–B) buffer

pool entries

(unordered)

• Buffer pool location lookup multi-threaded

Block IDUser 1

User 2

User 3

User 4

Block ID

Block ID

Block ID

• High activity, typically few naps

Ptr to buffer

BHT

BHT

BHT

. . .

BHT

BHT

-B

5© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Additional BHT improvements

1

Larger database deployments

• Running run with larger –B

− Each BHT protects more hash buckets

• # concurrent users increasing

2

Applications with data contention issues

• Access to small tables are not locally cached.

Two main reasons for BHT contention

6© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

▪ For example

• -B 6,000,000 with default –hash of 1471

• BHT @ 1024, = ~1.4 buckets per latch

• Avg 4 hash chain entries per bucket

– ~5,860 hash entries locked per BHT latch

– Contention chances increased

• Increase –hash?

– Fewer hash collisions and therefore shorter chain length

o May decrease time the BHT is held

– Does nothing to change # entries protected by each latch.

1 Larger database deployments

7© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Resolution: (OE 11.7.3 & OE 12.0)

▪ -hashLatchFactor default 10%

• Percentage of hash buckets per –B hash latch (BHT)

• Increase –hash “automatically” increases # BHT latches

• Helps improve random data access BHT contention

▪ Why not always 100%?

• -B 6,000,000 = ~ 1,500,000 latches = ~ 23 MB

• Page out / page in may require 2 BHT latches

– Increased likelihood with higher % of latches

▪ At 100% can I still see BHT waits?

1 Larger database deployments

8© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

▪ Frequent scanning of small tables

• Few blocks accessed frequently - not really random access

• Not helped much by -hashLatchFactor

• Could be locally cached by the application

▪ Typical data access:

• Records: random except for table scan

– Accessed in some indexed order

– Sequential access limited by “rec per block” setting

• Indexes: Sequential

– Indexes are highly compressed

– Many entries in one index block

2 Applications with data contention issues

9© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Resolution:

▪ Optimistic buffer pool lookups

• Remember not only last block accessed,

but remember where in the -B the buffer resided last

• Eliminates need for many BHT requests

• Helps both random and small table data access

• Index scan and “true” table scan only (sequential access)

▪ Result?

• 50% reduction in hash table lookups (higher for “true” table scans)

2 Applications with data contention issues

Multi-threaded DB Server

11© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

12© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

The OE DB Storage Engine is indeed thread safe

▪ The Storage Engine provides threaded access to data for

▪ PASOE accesses the database via threads

• Uses a thread pooling technique

▪ OE SQL accesses the database via threads

• Employs one thread per connection

▪ Certain DB utilities utilize threads for data access

▪ ABL Database Server is not multi-threaded

• Each server process handles data requests for multiple connections one
at a time.

13© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Multi-threaded DB Server – Why?

▪ Improved performance

• Processing requests in parallel improves remote client performance

• Enhanced lock wait processing

• Connection processing separated from OLTP

• Decreases context switching costs

▪ Continuous availability

• Kill of remote client can’t crash a database

– Remote client process never executes in a database critical section

▪Enabler for Server Side Join project

• Served clients don’t need to wait another’s completion

14© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Requests of Server – Classic Model

Login

Request

Service

Request

Create &

control

messages

Login

Requests

Message

Requests

processed

1 at a time

Network Communication Service

Remote Client Remote Client Remote Client
Up to –Ma

clients

Data

MSG Buffers & Socket Array

S
Service

Request S
Service

Request S
Service

RequestS
Service

Request

Message Message Message

Server Process

Listen for connection,

Message creation &

Process requests

L

Unused CPU

power on

server machine

15© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Requests of Server – Threaded Model

Server Process
(Thread 0)

Listen for connection,

Message creation &

Thread control

Network Communication Service

MSG Buffers & Socket Array

Requests

processed

concurrently
Thread Thread Thread Thread

Data

Remote Client Remote Client Remote Client
Up to –Ma

clients

Message

S
Service

Request S
Service

Request S
Service

RequestS
Service

Request

Message Message Message

Broker started with

-threadedServer 1 –Ma 4

Signal

handler

thread

Overhead

threads

No change to remote client

Improved throughput

Login

RequestsL

16© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Parameters

▪ Broker specific configuration (not database wide)

• Primary vs secondary brokers

• -ServerType (ABL, SQL, BOTH)

– Sql only Brokers – has no effect

▪ -threadedServer 1 -S <service> -H <hostname>

• On by default

– (19151) Threaded database server (-threadedServer): Enabled

▪ -threadedServerStack 512

• Reserved stack space for each thread

– (19159) Threaded stack size for threaded database servers

(-threadedServerStack): 512k

17© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

More on Parameters

▪ -Mi, -Ma, -Mn

▪ Checking parameter settings

• _dbparams, _servers parameter array

• .lg and promon

▪ ulimits

• “max user processes” (threads), “stack size”, “virtual memory”

• No additional file handles required

– Threads share file handles

– Operating system deals with thread consistency

• One open socket per connection (same as non-threaded)

18© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Debugging

▪ Promon / vst identification

• Type: “TSRV”

• New connection information:

▪ Executables spawned by “preserve” broker process

• -threadedServer 1: _mtprosrv

• -threadedServer 0: _mprosrv

▪ .lg file: P-301988 T-301989 I TSRV

• Thread id changed to OS’s LWP tid

• TID: thread Id • SPID: Server PID • STID: Server TID

19© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Debugging

▪ Debugging

• ps –eflyT to see light weight processes

• Stack trace information

– Location information recorded in .lg file

• kill –SIGUSR1

– Remote client: TSRV: Protrace location: /usr1/richb/12/protrace.13573

– Threaded server: Protrace.<pid>.<tid>

protrace.301988.301988

protrace.301988.301989 (…)

• On SIGSEGV, thread causing the error will dump core & protrace

– Server process exits; Same as non-threaded servers

20© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

ps –eflyT

Light Weight Processes: 2 remote client example

21© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

ps –eflyT

UID PID SPID PPID CMD

B: psc 301939 301939 1 _mprosrv x -S 6988 -threadedServer 1

T0: psc 301988 301988 1 _mtprosrv x -m1 -threadedServer 1 -threadedServerStack 512

T1: psc 301988 301989 1 _mtprosrv x -m1 -threadedServer 1 -threadedServerStack 512

T2: psc 301988 301990 1 _mtprosrv x -m1 -threadedServer 1 -threadedServerStack 512

T3: psc 301988 301991 1 _mtprosrv x -m1 -threadedServer 1 -threadedServerStack 512

▪ PPID: parent process ID

▪ SPID: LWP or thread ID

Light Weight Processes: 2 remote client example

▪ Thread spawned on 1st connection request

▪ Threads re-used after client disconnects

22© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Tuning

▪ Performance profile mimics self service

• Tune for self-service

▪ You can overwhelm your server machine faster

• Improved performance requires more resource

▪ Broker centric

• One broker can spawn threaded servers

• A different broker can spawn non-threaded servers

▪ Latch contention increases – there are more concurrent requests

• MTX, TXQ, BHT, BUF

• BHT improvements help

• General recovery subsystem tuning (ai/bi bufs, checkpoints…)

23© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Performance

▪ Typical high read work load

• 250kB record reads/sec for 100 concurrent users, 8 DB Servers

• 7 table join

• Local loopback

• 25% record presentation

• 75% record filtering

FOR EACH Table1 NO-LOCK,

EACH Table2 NO-LOCK OF Table1

, EACH Table3 NO-LOCK WHERE Table3.Percent_100 = Table2.Num_Key2

, EACH Table4 NO-LOCK OF Table3

, EACH Table5 NO-LOCK WHERE Table5.Percent_75 = Table4.Num_Key4

, EACH Table6 NO-LOCK OF Table5

, EACH Table7 NO-LOCK WHERE Table7.Percent_50 = Table6.Num_Key6

▪ Query information

24© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Performance (As always, YMMV)

BHT

▪ At 100 users, little contention

▪ At 150 users, contention grows and BHT really shows a difference

▪ Bottom line:

• If #users and read rates low, no change

• Otherwise ~10% improvement

BHT & Threaded DB Server

▪ key factors: Configuration, lock conflicts & network latency

• 1.8x to 2x performance improvement should be typical

Server Side Joins

26© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Server query resolution model

FOR EACH

Customer, EACH

Order of Customer

WHERE ...

▪ Client now only asks for the next set of data

• In the past, Client tells Server what to do

▪ Reduces # records sent

▪ Reduces TCP communication requests

Remote Client DB Server

Customer1 Order

Customer3 Order

Customer1 Order

Customer2

Customer3 Order

Data

27© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

SSJ OE 12.0 Functionality

▪ In the first release of the Server Side Join feature

• Support of “for each” statements for joins up to 10 tables

– no open query or dynamic query operations

▪ Requires multi-threaded database server

• -ssj on by default if –threadedServer 1

– (19329) Database server side join support (-ssj): Enabled

• -ssj setting lasts for the life of the connection

• -ssj can be changed online (currently primary broker only)

▪ Broker Specific Configurations

• -threadedServer 1 and -ssj 1

28© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Realizing SSJ

▪ No changes to the application code

▪ Client logging

• -logentrytypes QryInfo, -logginglevel 3

• Monitor the change in

– DB Reads:

– Records from server:

• Type: FOR Statement, Server-side join

29© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

When does SSJ matter?

▪ # records filtered client side

• Fewer records filtered clients side improves performance

▪ Cost of TCP I/O

• Fewer network messages means fewer costly operations.

▪ If all records satisfy the query (no client side filtering),

then there is no expected advantage.

• True?

30© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

SSJ Example

▪ Report customers and their order information

for orders promised tomorrow.

For each customer

, each order of customer where

promise-date = (today + 1)

, each order-line of order

31© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Threaded DB Server & SSJ Test Case

▪ Client log stats

Server Activity -ssj 0 -ssj 1 -ssj 0 -ssj1

DB Blocks accessed: 789 718

Customer 82 81 83 8

Order 202 22 8 8

Order-line 24 24 27 27

DB Reads Recs from server

For each customer

, each order of customer where

promise-date = 03/15/1993

, each order-line of order

32© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Easing Network Traffic – Orders of magnitude!

Server Activity -ssj 0 -ssj 1 Description

Messages received 375 53 7x fewer messages received

Bytes received 63,420 5,432 11x less data received

Messages sent 191 36 5x fewer messages sent

Bytes sent 34,336 6,768 5x less data sent

“Records” received 0 0

“Records” sent *118 *45 2.5x fewer records to client

Queries received 191 34 5.5x fewer query requests

Result Count 27 27 Entities realized

For each customer

, each order of customer where

promise-date = 03/15/1993

, each order-line of order

33© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Threaded DB Server & SSJ Test Case

▪ Client log stats (7 table join)

Server Activity -ssj 0 -ssj 1 -ssj 0 -ssj1

DB Blocks accessed: 30,375 21,578

Table1 98 1 100 50

Table2 198 228 200 100

Table3 398 199 400 200

Table4 798 398 800 400

Table5 1,200 799 1,200 8,00

Table6 2,398 1,598 2,400 1,600

Table7 3,200 3,198 3,200 3,200

Totals 8,300 6,350

DB Reads Recs from server

34© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Performance of Easing Network Traffic

Server Activity -ssj 0 -ssj 1 Description

Messages received 14,364 4,711 3X fewer messages received

Bytes received 2,490,192 510,132 4x less data received

Messages sent 9,322 4,739 50% fewer messages sent

Bytes sent 1,729,899 1,092,886 63% less data sent

“Records” received 0 0

“Records” sent *8,300 *6,356 25% less filtering

Queries received 9,262 4,703 50% fewer query requests

Result Count 3,200 3,200 Entities realized

▪ Performance of the test case described

• An additional 30% performance improvement

• ~3X overall improvement (using localhost network access)

• Expect even greater improvement with “true” remote access

35© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Factors Affecting Performance Enhancements

▪ Current concurrency conditions

▪ Data access patterns

▪ Configuration

• # clients per server

– More server processes increase context switching cost

• 1 client per server

– high concurrency, bad at record lock resolution)

▪ Network latency

▪ Amount of client side filtering

▪ Query type

36© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

BHT Improved concurrency

Multi-threaded ABL DB Server

Server-Side Joins

