Getting Pushy with

Node.js and OpenEdge

Dustin Grau, Software Architect

BRAVEPOINT
5000 Peachtree Ind. Blvd.

Suite 100
Norcross, GA 30071

PUG Challenge
Americas 2014

‘F;
_

About the Presenter

Senior developer and consultant at BravePoint, Inc.
Founded in 1987 with currently ~125 employees
Consulting, training, and placement services

WebSpeed application developer since 1999

Implementing JS/AJAX frameworks since 2010

Lead architect for modernization framework “Application Evolution”

Session Overview

Understand concepts that are critical to push technologies
Quick primer on integrating ABL with Node.js and Socket.io

You should leave here able to do all of this on your own!

You will be able to download all software shown here today!

Push vs. Pull

If you request data, you are performing a “pull”
Polling mechanisms operate via requests

A true “push” only comes direct from the server
You need 2-way communication for this to work

This can be addressed by using WebSockets

WebSockets?

RFC 6455 - The WebSocket Protocol

Provides 2-way communication to supported browsers
Begins as a standard HTTP GET request from client
Requests an “upgrade” to WebSocket protocol

Server performs handshake and initiates connection
Client remains connected to server

Can be provided by Node.js and Socket.io

This is where the magic happens...

Performance Considerations

= AJAX vs. WebSockets

= AJAX is expensive (headers, overhead, etc.)

= Polling causes network traffic for useless data

= WebSockets have a small handshake, occurs once
= Lower latency when using WebSockets vs. HTTP

= Means nothing if your browser doesn’t support WS

. ~ = <
- ~ - [
¥ ¥ 'S b
1 5] 5 '8 =y
@ a I .4 B LI -4
| S | b . 1 8
a 2 « | | &
[x .2
I *

Time

SOy 1Oy 150my 00ms 250my >
r— —
¥ 5. 5, 5, B, ¥
g g g g g 183

“
‘ <
§ 2 38 3e g8 Se Se
%% 2§ 4§ 4 5 125
S5 i< i< < £C -;k
g 2 : g g :]

Parts List BRAVEP OINT

= Progress OpenEdge (11+) OpenEdge
= Node.js (http://nodejs.org)
= Socket.io (http://socket.io) b

= jQuery (http://jquery.com)
= Aserver (AWS, Modulus, etc.)

= A compatible browser N d ¢

= A compatible device -

& jQuery

write less, do more.

Just a listing of all the items that will be combined for our solution.

= Sample Problem

= A Solution

= Demonstration

= Code How-to

= Future Enhancements

= Summary / Q&A

Sample Problem

Client wants immediate notification sent to users
Needs to access this via a web application
Wants to use minimal system resources

Needs to target specific users with info

We’'ve got something for this...

Issues: sluggish responses, high CPU usage, etc.
Difficulties: corporate rules and access control, network security and firewalls, etc.

A Solution

Should ideally...
Keep a low profile (cpu/memory) with minimal setup
Be able to deliver data continuously (no “spin up” time)
Handle multiple connections from interested parties
Data should update automatically, in near real-time

Maintain a level of security among data and subscribers

Our solution...
Uses ABL code to send messages to Node.js
Works on any operating system where OpenEdge can be installed
Utilizes a separate, central process for all client connections
Is accessible by any web browser on any device

Uses WebSockets to push data to subscribed clients

Why Node.js?

It's extremely lightweight, both for installation and runtime

It can handle many, many simultaneous connections

Can provide multiple services over the same port

Has a package manager to provide additional capabilities
Install is as simple as “npm install socket.io”

Allows for event-driven applications using “on” statements
Socket.io provides a single solution for 2-way communication
Can use AJAX long polling and other fallback mechanisms

Node.js is essentially JavaScript for the server-side environment

It uses an asynchronous, multi-threaded, non-blocking I/O scheme
Made specifically for HTTP and WebSocket communication
Arbitrary events can be observed

\"/
Sample Display BRAVEPOINT

Subscribed to db3b25a674d1819ce21162fb1d3ffad225467603 Updated at 12:08:27 Reset Stats

Table Activity Index Activity User Activity

REI 9244 53 444

demo@rei_com 5348 8
Dustin@windowsid Default 5096 8003 1 404 0
demo@rei_com REI 7560 9348 48 102 3
Anonymous Default 568 11536 21 3 0
SYSTEM NA 5928 3942 285 0 0
SYSTEM NA 5800 4 0 0 0
SYSTEM NA 4504 4 0 0 0
DB_Agent NA 5268 4565993 138 0 0
SYSTEM NA 872 4 0 0
SYSTEM NA 4588 4 0 0
SYSTEM NA 5416 13 0 0
SYSTEM NA 5780 13 0 [}
Anonymous Default 3468 12178 136 0 0

http://goo.gl/2KXQ7G

Our newest version instead packages the data as a dataset in JSON for delivery.
The Ul handles display of the data in a web-based environment.
Let’s look at a live demonstration...

Action Overview

~0

L

Harvester
(ABL)

The harvester is the primary daemon, running on the production environment.

A harvester sends data to a Node.js server, identifying itself by a UUID.

The broadcaster is the Socket.io server, which is organized by UUID “rooms”.
Clients connect and join a room, where they receive data from harvesters.

Only data for the UUID to which they subscribe will be sent to them.

UUID Data (POST)
Room (Node.js)

= I

.
<

g -

Clients
(Sockets)

Broadcaster \
(Socket.io) \

)

Architecture Overview

WS
A1 &B1

WS AWS, Rackspace, etc.

R

Node.js
&

Socket.io

A1: “session_uuid_12345” B1: “session_uuid_67890”

Client A

ClientB
HTTP

POST
from B1

HTTP
POST
from A2

Server 1

Production Environments

We’re not limited to a single room. There could be multiple clients with multiple servers utilizing the Node.js broadcaster service.
Clients can subscribe to one or many server broadcasts by opening a new browser tab and entering the desired UUID.
For our purposes a UUID is a 40-character value that identifies a running instance of our monitor procedure.

\"/
Code How-to BRAVEPOINT

= Progress (Harvester)

* monitor.p
— SyslLoad.cls
— WebSocket.cls

= Node.js (Broadcaster)

© index.js <
— Socket.io (Server)
+ client.html
— Socket.io (Client)

index.js

/**
* Provide service at a default port.
*/

var listen_port = 1337;

/**
* Create an HTTP server to handle regular web requests.
*/

var http = require("http"); // HTTP service

var url = require("url"); // URL parser

var fs = require("fs"); // FileSystem

var httpServer =

http.createServer (onHttpRequest).listen(listen_port);

/**

* Handle socket.io connections.

*/
var io = require("socket.io").listen(httpServer);
jo.sockets.on("connection", onSocketConnect);

Node.js is a very open-ended server platform. It answers to a port, handling requests according to protocol.
In this case we start up an HTTP server on a port, then extend that server to support WebSockets.
Let’s look at two handler methods for each of these server types.

index.js (onHttpRequest)

function onHttpRequest(request, response) {
var parsedUrl = url.parse(request.url);

var pathName = parsedUrl.pathname || "";
var pathArray = pathName.split("/"); // Convert to array.
var pathVal = (pathArray.length > 1) ? pathArray[1l] : "";

switch(request.method) {

case "GET":
doGet(pathVal, request, response);
break;

case "POST":
doPost(pathVal, request, response);
break;

default:
// Unsupported HTTP method.
response.writeHeader (405, "Method Not Allowed",

{"Content-Type": "text/plain"});

response.end();

The first is the HTTP handler, which will deal with data from monitor.p and initial client requests.
The GET and POST handlers work as expected for those methods.

index.js (doGet)

function doGet(pathVal, request, response){
var filename = null;

switch(pathval){

case "":

case "client.html":
// Serve the client HTML file on GET.
filename = "/client.html";
break;

default:
// File not found for serving.
response.writeHeader (404, "Not Found",

{"Content-Type": "text/plain"});

response.end();

}

if (filename) {
fs.readFile(__dirname + filename, "utf8", function(error, content) {
response.writeHeader (200, "OK", {"Content-Type": "text/html"});
response.end(content) ;

1)

For GET requests, we look at what file has been requested and serve up the HTML document.

index.js (doPost)

function doPost(pathVal, request, response){
var uuid = pathval; // In this case the path value 1is a UUID.
var postData = ""; // Store the body data on POST.
var count = 1;

request.on("data", function(chunk){
postData += chunk;
if (postData.length > 1le6) {
postData = ""; // Abort if data appears to be a [malicious] flood.
response.writeHeader (413, {"Content-Type": "text/plain"}).end();
request.connection.destroy();
}
count++;
}); // on data

For POST requests, we need to first accept the data payload.
Using events, we begin chunking data on the “data” event.

index.js (doPost)

request.on("end", function(){

var responseBody = {response: "Broadcast Sent: " + uuid};
if (postData != "") {
var jsonObj = null;
try {
jsonObj = JSON.parse(postData);
} catch(parseErr) {
responseBody = {response: "JSON Error: " + parseErr.message};
}

// Add the UUID for socket broadcast.
if (harvesters.indexOf(uuid) < 0) {
harvesters.push(uuid);

// Broadcast to clients on socket server, based on UUID.
if (jsonObj && 1io.sockets.clients(uuid).length > 0) {
var room = jo.sockets.in(uuid);
room.emit("broadcast-data", jsonObj.activityData);
}
} // postData

We continue by checking for the “end” event on the request. This signals when we can begin the output process.
First the data we gathered gets parsed into JSON, and we send the activity data to the socket server.
The trick here is to see if anyone is in a room, identified by a UUID, and emit a broadcast if subscribers are present.

index.js (doPost)

s

response.end();
}); // on end

// Prepare response body with optional commands.

if (commands[uuid]) {
responseBody.commands =
delete commands[uuid];

// End the response with a message.
var responseJSON
var responseHeaders = {
"Content-Type":
"Access-Control-Allow-Origin":
"Content-Length": Buffer.bytelLength(responseJSON)

response.writeHeader (200, "OK",
response.write(responseJSON) ;

commands [uuid];

= JSON.stringify(responseBody);

"application/json",
nmxn
3

responseHeaders) ;

After making the broadcast, we check for any commands that may have been queued for this UUID.
Finally, we prepare a response back to the Progress program, sending the body and headers.

index.js (onSocketConnect)

function onSocketConnect(socket){
/**
* Handle requests to listen for broadcast consoles
*/
socket.on("listen", function(uuid, callback) {
// If the uuid looks legit, subscribe.
if (uuid.length == 40) {
socket.uuid = uuid; // Save UUID on socket.
socket.join(uuid); // Join a "room" for UUID.

// Callback to the listener with a successful flag.
callback(true);
} else {
// If the uuid is not available, reject the request to listen.
callback(false);
}
}); // on listen

Now the fun part: socket!
We need a handler for the socket server, which accepts the a socket connection.
Here we can define events on the socket, such as “listen” which is used by client connections.

index.js (onSocketConnect)

/**
* Handle requests for new commands back to harvester
*/
socket.on("send-command", function(uuid, command) {
// If the uuid is being broadcast, add to queue.
if (harvesters.indexOf(uuid) >= 0) {
if (commands[uuid] && commands[uuid] 1instanceof Array) {
// Queued commands pending, add to existing list.
if (commands[uuid].index0f(command) == -1) {
// Prevent adding duplicate commands.
commands[uuid].push(command) ;

}

} else {
// No queued commands, create new queue for uuid.
commands [uuid] = [command];

}
}

}); // on send-command

Events can be completely arbitrary, and in this case the server listens for a “send-command” event.
In this case, it accepts a list of commands for a given UUID, and queues them for return to Progress.

Startup (Node.js)

Windows:
C:\> node 1index.js

Linux:
node 1index.js

To start a Node.js program, it’s as simple as running “node” with the name of a JavaScript file as parameter.

\"/
Code How-to BRAVEPOINT

= Progress (Harvester)

* monitor.p
— Sysload.cls
— WebSocket.cls
= Node.js (Broadcaster)
* index.js
— Socket.io (Server)
¢+ client.html <
— Socket.io (Client)

client.html (HTML)

<body>
<form id="sub-form">
<label for="uuid-input">Enter a UUID:</label>
<input id="uuid-input" maxlength="40" size="50" value="db3b25a674d1819ce21162fb1d3ffad225467603" />
<input type="submit" did="sub-button" value="Subscribe" />
<div id="uuid-error">The specified UUID is dinvalid.</div>
</form>
<div id="console'">
<div id="monitor-header">
<div id="monitor-uuid"></div>
<div id="monitor-time"></div>
<div id="monitor-controls">
<form id="command-form"><input type="button" id="reset-button" value="Reset Stats" /></form>
</div>
</div>
<div id="monitor-data">

Table Activity
Index Activity
User Activity

<div id="tab-1">
<table id="activity-table"></table>
</div>
<div id="tab-2">
<table 1id="index-table"></table>
</div>
<div id="tab-3">
<table id="user-table"></table>
</div>
</div>
</div>
</body>

The structure of the HTML document provides structure for the webpage.
Several DIV tags are merely placeholders for data that will be dynamically loaded.

client.html (CSS/JS)

<link rel="stylesheet" src="http://normalize-css.googlecode.com/svn/trunk/normalize.css" />

<link rel=“stylesheet” src="http://code.jquery.com/ui/1.10.3/themes/smoothness/jquery-ui.css" />

<script src=“http://code.jquery.com/jquery-1.10.2.js"></script>

<script src=“http://code.jquery.com/ui/1.10.3/jquery-ui.js"></script>

<script src="/socket.io/socket.io.js"></script>

A few other files are included, like stylesheets and javascript libraries.
Note that most files are linked to CDN'’s, as we don’t want to serve them up from Node.js
However, note that socket.io.js is actually served relative to the document root.

http://normalize-css.googlecode.com/svn/trunk/normalize.css
http://code.jquery.com/ui/1.10.3/themes/smoothness/jquery-ui.css
http://code.jquery.com/jquery-1.10.2.js
http://code.jquery.com/ui/1.10.3/jquery-ui.js

client.html (JS)

<script>
$ (document) .ready (function() {
// Give focus to the UUID 1input when the page loads
$S("#uuid-input").focus();

// Create a connection to the server
var socket = ijo.connect(document.URL);

// Prepare tab interface.
$("#monitor-data'").tabs();

// Handler for updating screen data.
$.updateConsole = function(data){ ... }

// Handler for subscription event.
$.doSubscribe = function(){ ... }

// Handle submission of the form, try to subscribe to the UUID.
S("#sub-form") .submit(function(ev){
// Prevent the browser from submitting the form via HTTP
ev.preventDefault();

// Attempt to subscribe to the given UUID.
$.doSubscribe();
b;
1)

</script>

Using some typical JQuery code, we set up a method to run when the document finishes loading.

One of the important items is the creation of the socket connection via io.connecty().

This connects to the local Node.js server using socket.io, which creates a WebSocket on compatible browsers.
The first major method is doSubscribe, which is called when submitting the form with a UUID present.

client.html (doSubscribe)

$.doSubscribe = function(){
var uuid = $("#uuid-input").val();
if (uuid) {
socket.emit("listen", uuid, function(successful) {
if (successful) {
// Hide the subscription form and show the main console.
S("#sub-form").hide();
$("#console").show();
$S("").addClass("system-message").text("Subscribed to "
+ uuid) .appendTo("#monitor-uuid");

// Handle incoming broadcasts (sends "data" as a parameter).
socket.on("broadcast-data", $.updateConsole);

// Handle sending of commands.
$S("#reset-button").click(function(ev) {
// Queue command for the next broadcast from harvester.
socket.emit("send-command", uuid, "reset");
alert("Statistics will be reset after the next update.");
s
} else {
// If the request to subscribe was rejected, show an error message.
S("#uuid-error") .show();

3

This method emits the “listen” event on the Node.js/Socket.io server.
Upon the callback function running with a successful response, the client begins watching for the “broadcast-data” event.
In the event the reset button is clicked, a command is queued via the “send-command” event.

client.html (updateConsole)

$.updateConsole = function(data){
// Split data into tables.
var monitorData = null;
if (typeof(data) == "string") {
try {
// Always parse in a try/catch block!
monitorData = JSON.parse(data);
} catch(parseErr) {
// Fail silently.

}
} else if (typeof(data) == "object") {
monitorData = data;
}
monitorData = monitorData || {};
var activity = monitorData.returnAct || [];
var indexAct = monitorData.returnIdxAct || [];
var userAct = monitorData.returnUsrAct || [];

$("#activity-table").empty();
$("#index-table").empty();
$("#user-table").empty();

This method is the callback for the “broadcast-data” event. It takes the data returned (as JSON) and parses it into an object.
The object is then split into the tables (this was originally a dataset), and the HTML tables are populated dynamically.

\"/
Code How-to BRAVEPOINT

Progress (Harvester)

monitor.p <€

— SyslLoad.cls
— WebSocket.cls

Node.js (Broadcaster)

index.js

— Socket.io (Server)

client.html
— Socket.io (Client)

This solution consists of two primary parts: the harvester and the broadcaster.

monitor.p is the only program that must run on the Progress side
index.js is the main program on the Node.js side,
which also serves up the client.html file for clients

\"/
Startup (ABL) BReEpo

start.sh

#!/bin/bash
export PROPATH=./;$1
_progres -b -p monitor.p -pf startup.pf > logs/monitor.log

startup.pf

Database to Monitor

-db Sports2kMT
-H localhost
-N TCP

-S 8650

-rereadnolock
-T ./temp

-TB 31

-TM 32

-rand 2

-mmax 8000

A typical startup includes running the program in batch mode, connected to a single database.

monitor.p

&GLOBAL-DEFINE THROW ON ERROR UNDO, THROW
&GLOBAL-DEFINE SERVER_IP "127.0.0.1"
&GLOBAL-DEFINE SERVER_PORT 1337
&GLOBAL-DEFINE UUID "db3b25a674d1819ce21162fbld3ffad225467603"
&GLOBAL-DEFINE PROCESS_WAIT 10
&GLOBAL-DEFINE MAX_ROWS 30

ROUTINE-LEVEL ON ERROR UNDO, THROW.
USING com.bravepoint.*.

DEFINE VARIABLE oSyslLoad AS SysLoad NO-UNDO.

ASSIGN oSysLoad = NEW SyslLoad({&SERVER_IP},
{&SERVER_PORT},
{&UUID},
{&PROCESS_WAIT},
{&MAX_ROWS}).

MESSAGE SUBSTITUTE("[&1 &2] Starting monitor...",
STRING(TODAY, "99/99/9999"), STRING(TIME, "HH:MM:SS")).
oSysLoad:startMonitor ().

FINALLY:

DELETE OBJECT oSysLoad NO-ERROR.
END FINALLY.

The monitor starts a new instance of SysLoad against the connected database.
This sends data (in JSON format) to the specified server and port, using a UUID.

SysLoad.cls

METHOD PUBLIC VOID startMonitor ():
MAINBLK:
REPEAT:

waitFor().
buildSample().

IF DATASET activityData:WRITE-JSON("LONGCHAR", cRequest, FALSE,

"UTF-8", FALSE, TRUE) THEN DO:
jsonRequest:Add (INPUT "activityData", INPUT cRequest).
jsonRequest:Write(INPUT-OUTPUT cRequest, INPUT TRUE, INPUT "UTF-8").
jsonRequest:Remove (INPUT "activityData").
oWebSocket:sendData(INPUT SUBSTITUTE("http://&1:&2/&3",

cServerAddr, iServerPort, cMonitorUUID),
INPUT cRequest,
OUTPUT iStatus,
OUTPUT cMimeType,
OUTPUT cResponse).

END. /* WRITE-JSON */

END.
END METHOD. /* startMonitor */

SyslLoad:startMonitor provides 2 services:

1) Generation of statistics on a running database.

2) Sending of data to Node.js via the WebSocket class.
3) Just does an HTTP POST using a Progress socket.

After this, show demo again to reinforce what we’ve done.

Event Overview

Harvester

oSysLoad:startMonitor ()

oWebSocket:sendData(...)

[POST Response]

Broadcaster

httpServer = http.createServer
io.listen(httpServer)

socket.on("listen", ...)

room = io.sockets.in(uuid)
room.emit("broadcast-data",

socket.on("send-command", ...)

BRAVEPOINT

socket = jo.connect(document.URL)

socket.emit("listen", ...)
socket.on("broadcast-data", ...)
socket.emit("send-command", ...)

Demo (Revisited)

Subscribed to db3b25a674d1819ce211621b1d3flad225467603 Updated at 12:08:27

Table Activity Index Activity User Activity

REI 9244 53 444

demo@rei_com 5348 8
Dustin@windowsid Default 5096 8003 1 404 0
demo@rei_com REI 7560 9348 48 102 3
Anonymous Default 568 11536 21 3 0
SYSTEM NA 5928 3942 285 0 0
SYSTEM NA 5800 4 0 0 0
SYSTEM NA 4504 4 0 0 0
DB_Agent NA 5268 4565993 138 0 0
SYSTEM NA 872 4 0 0
SYSTEM NA 4588 4 0 0
SYSTEM NA 5416 13 0 0
SYSTEM NA 5780 13 0 [}
Anonymous Default 3468 12178 136 0 0

http://goo.gl/2KXQ7G

V
Summary BRAVEPOINT

Use ABL to send messages to Node.js via POST requests

You can run Node.js locally or externally (hosted platform)

A separate server for client connections bridges the gap
Organize connections into manageable notification groups
Node.js is lightweight and serves all connections (HTTP & WS)
Socket.io provides realtime data and handles fallback gracefully
Certainly not limited to just the scenario presented here

Code is available for you to try immediately!

So, any questions?

Get out your phones or laptops, everybody!
Join the hotel network “RegencyGuestWifi”
Open your browser and go to the URL below:

http://goo.gl/e9zUd5

Sit back and wait...

BRAVEPOINT

Dustin Grau

dgrau@bravepoint.com

Thank Youl!

[=]
[=]

http://goo.gl/Xoikn9

[=]

